微分方程模型_MIT—微分方程笔记03 一阶线性常微分方程解法

本文介绍了微分方程中的一阶线性常微分方程,包括其定义、重要性和标准线性形式。讲解了在一阶线性常微分方程在温度—浓度模型、混合模型、放射性衰变模型和银行利率模型等领域的应用,并详细阐述了传导和扩散模型。此外,还提供了微分方程的解法步骤,并通过具体例子进行了解析。
摘要由CSDN通过智能技术生成

92ba261c5f36470b19306a03b3ad36b6.png

第03讲 一阶线性常微分方程解法

Linear First Order ODE's: Definition and Examples

[微分方程][MIT]麻省理工公开课 (3)​v.youku.com
0747b9e555a1d989161de9f2058e993f.png
  • 一阶线性微分方程

这一讲的主要内容是一阶线性常微分方程

。所谓的“线性”是指导函数y¢和解函数y之间呈线性关系,可以类比线性方程
。如果
c=0,则称为齐次方程。

一阶线性常微分方程的标准线性形式为

,这一表达式突出了“线性”。还有一种常用写法是
,这以表达式只突出了“一阶”,两者在
p( x)的符号上有差异,要注意分别,弄错了会完全搞错解函数的性质。Mattuck教授只使用第一种形式。

一阶线性常微分方程之所以重要,一方面是它总是可解的,而另一方面则是它在建模中应用广泛。

  • 数学模型

几种重要的微分方程模型:

温度—浓度模型

混合模型

放射性衰变模型

银行利率模型

运动模型

下面介绍“温度—浓度模型”,它又可以称为“传导—扩散模型”,其内涵都是相同的,只是应用领域有差异,传导是针对温度变化,而扩散是对应浓度变化。

传导模型:在液体池内部悬浮一个金属块,其外壁部分隔热。金属块的温度T与液体的温度Te并不相等,温度变化符合“牛顿冷却定律”

,其中热导常数
,初值为

扩散模型:在盐水池内部有一内部空间,其中盐浓度C与外部盐浓度Ce有所差异,两者之间有半透膜可以完成盐分的扩散过程,扩散方程为扩散率等于常数乘以浓度差,

将传导模型写成标准格式为

。而更一般形式的方程是导热常数
k和外部温度都可以随着时间改变。
  • 解微分方程

微分方程

,方程可以用积分因子法求解。将积分因子u(x)乘到微分方程两侧得到
。若左侧是某个函数的导函数,则将方程两侧同时对
x积分就可以得到解函数,因此努力将等式左侧拼凑成导数的形式。注意到等式左侧第一项就是两函数之乘积 uy的导函数的第一项
,因此很容易想到
可以凑成
,只要
就行了。可得
,即
。当然这个积分因子不止一个,但是只要求出一个就可以了,因此不用在积分上添加常数项。

小结:微分方程

(0) 写成如上式的标准形式,这样可以避免p(x)带符号因其的计算错误。

(1) 计算积分因子

(2) 将方程两侧同时乘以积分因子

(不要忘记右侧也要乘)。

(3) 对等式两侧积分。

例1

(0) 写标准形式

(1) 计算积分因子

(2) 将方程两侧同时乘以积分因子

(3) 对等式

两侧积分得到
。得到

例2

(0) 写标准形式

(1) 计算积分因子

,因此

(2) 将方程两侧同时乘以积分因子

(呵呵,这就是原方程)。

(3) 对等式

两侧积分得到
。得到

如果给定了微分方程的初值条件为

,则将
x=0代入上面的解析式求出常数 C。得到解函数为
  • 线性常系数微分方程

传导模型

。积分因子为
。方程两边同时乘以积分因子得到
。两侧积分可得到
。得到:

最好写成定积分的形式

。若初值条件为
,则有
。因为
,所以
随时间变化趋向于0,解函数的前半部分就是所谓的“稳态解”,在
t趋近于无穷时候,稳态解表示了 T 的状态;而后一项
则是暂态解,在
t趋近于无穷的时候会消失。这告诉我们,从长远来看,初值对于最终的结果没有影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值