xy坐标正负方向_【笛卡尔坐标系】

笛卡尔坐标系包括直角坐标系和斜坐标系,由两条相交于原点O的数轴构成。xy-平面是笛卡尔平面,x轴通常水平向右,y轴垂直向上。笛卡尔在解析几何中引入坐标系统,将几何问题转化为代数问题,对数学和物理学的发展产生了深远影响。坐标系在工程和物理学中广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

79ed3c642231765c9745e15c4f72de31.png

【壹】

笛卡尔坐标系(Cartesian coordinates)就是直角坐标系和斜坐标系的统称。

相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。

【贰】

两个坐标轴的相交点,称为原点,通常标记为 O ,既有“零”的意思,又是英语“Origin”的首字母。

这两个不同线的坐标轴,决定了一个平面,称为 xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。

【叁】

空间直角坐标系

为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴。通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。这样就构成了一个笛卡尔坐标。

在三维笛卡尔坐标系中,三个平面,xy-平面,yz-平面,xz-平面,将三维空间分成了八个部分,称为卦限(octant) 空间。

【肆】

笛卡尔在《方法谈》一书附录的《几何学》这篇论文中,阐述了解析几何的基本原理,创造了笛卡尔坐标系。

在笛卡尔以前,几何和代数是两门科学,几何研究图形,代数研究数。笛卡尔不满意这两门科学孤立研究的抽象性,企图使二者联系起来,并使它们具体化。

他通过他所设计的坐标系统标示法,以及他对于变数的深入研究,证明几何问题可以归结为代数问题,在求解时可以运用全部代数方法。从此,变数被引进了数学,成为数学发展中的转折点,为微积分的出现创造了条件。笛卡尔坐标系被广泛地应用在工程技术和物理学领域中。

【附】

7469dec88fbd28e9d10a94edcf737374.png

笛卡尔(René Descartes,1596年3月31日-1650年2月11日)最为世人熟知的是其作为数学家的成就。他于1637年发明了现代数学的基础工具之一——坐标系,将几何和代数相结合,创立了解析几何学。

在哲学上,笛卡尔是一个二元论者以及理性主义者。他是欧陆“理性主义”的先驱。关于笛卡尔的哲学思想,最著名的就是他那句“我思故我在 ”。他的《第一哲学的沉思》(又名《形而上学的沉思》、《沉思录》)至今仍然是许多大学哲学系的必读书目之一。

在物理学上,笛卡尔将其坐标几何学应用到光学研究上,在《屈光学》中第一次对折射定律作出了理论上的推证。在他的《哲学原理》第二章中以第一和第二自然定律的形式首次比较完整地表述了惯性定律,并首次明确地提出了动量守恒定律。这些都为后来牛顿等人的研究奠定了一定的基础。

<think>好的,我现在需要解决用户关于使用CoreXY运动结构实现环形运动的设计和控制方案的问题。首先,我需要回顾CoreXY的基本原理。CoreXY结构通过两个电机协同工作来控制平面运动,通常用于3D打印机或CNC机床。其核心特点是使用交叉的皮带传动,使得两个电机的移动可以分解为X和Y方向的合成运动。 接下来,用户提到环形运动,也就是让执行器沿着圆形路径移动。这需要将圆形轨迹的参数方程转换为电机的步进信号。首先,我需要确定如何将笛卡尔坐标系下的圆形参数方程转换为CoreXY结构下两个电机的运动指令。这里可能需要用到逆运动学,将X和Y的坐标转换为两个电机的步进量和方向。 然后,考虑到CoreXY的运动学模型,假设电机的移动分别为A和B,那么X和Y的位置可以表示为:$$X = \frac{A + B}{2}$$ 和 $$Y = \frac{A - B}{2}$$。不过可能需要重新确认这个公式是否正确,因为不同的CoreXY配置可能有不同的转换方式。正确的转换应该是基于皮带的交叉布局,通常公式为:当电机A和B同时顺时针转动时,执行器沿X轴移动;当电机A顺时针,B逆时针时,执行器沿Y轴移动。因此,运动学方程应该是X = (A + B)/2,Y = (A - B)/2,或者是类似的变体,需要查阅资料确认。 接下来,环形运动的参数方程通常是:$$X = R \cos(\theta)$$ 和 $$Y = R \sin(\theta)$$,其中θ随时间变化。需要将X和Y的坐标转换为电机A和B的位置。根据运动学方程,可以解出A和B的位置:A = X + Y,B = X - Y。因此,对于每一个θ,计算对应的X和Y,然后得到A和B的位置,进而转换为电机的步进数和方向。 然后需要考虑插补算法,如何将连续的圆形路径离散化为步进电机的脉冲信号。这可能需要使用到Bresenham算法或者其他运动插补方法,确保运动平滑且精确。同时,还需要处理加速度和速度的控制,以避免电机失步或振动。 另外,用户提供的引用中提到了环形布局的计算方法,使用sin和cos计算每个元素的位置,这可能对生成环形路径的参数方程有帮助。比如,引用[2]中的代码示例展示了如何根据角度计算每个设备的位置,这在CoreXY的环形路径生成中可以借鉴,将每个点的X和Y坐标通过三角函数计算出来,再转换为电机的控制信号。 还需要考虑硬件实现,如电机的步进分辨率、驱动器的微步设置、脉冲频率等。在编程时,可能需要使用定时器中断来生成脉冲信号,如引用[1]提到的定时器中断函数,用于控制电机的步进和方向信号。同时,需要处理方向引脚的状态,根据A和B的变化方向调整电机的转动方向。 此外,可能遇到的挑战包括运动学转换的准确性、电机同步问题、机械误差的补偿等。需要在实际实现中进行校准和测试,可能需要闭环控制或反馈系统来确保精度,但CoreXY通常是开环控制的,所以机械结构的精度和皮带的张力调整也很重要。 最后,生成相关问题时要围绕CoreXY的应用、环形运动的控制挑战、运动学转换的具体实现、硬件配置等方面提问,帮助用户深入理解相关技术点。</think>### 使用CoreXY运动结构实现环形运动的设计和控制方案 #### 1. **CoreXY运动学基础** CoreXY结构的核心特点是通过两个电机协同控制平面运动。其运动学关系可表示为: $$ \begin{cases} X = \frac{A + B}{2} \\ Y = \frac{A - B}{2} \end{cases} $$ 其中,$A$和$B$为两个电机的位移量,$X$和$Y$为执行器的笛卡尔坐标[^1]。 #### 2. **环形运动的参数化** 环形轨迹的参数方程为: $$ \begin{cases} X = R \cos(\theta) \\ Y = R \sin(\theta) \end{cases} $$ 其中,$R$为半径,$\theta$为角度(随时间均匀增加)。将$X$和$Y$代入CoreXY运动学公式,可得电机位移: $$ \begin{cases} A = R (\cos\theta + \sin\theta) \\ B = R (\cos\theta - \sin\theta) \end{cases} $$ #### 3. **运动控制实现步骤** 1. **轨迹离散化** 将连续的环形路径离散为小线段,每段对应$\Delta\theta$的角度增量。例如,每1°为一个步长,生成360个离散点。 2. **电机脉冲计算** 对每个离散点,计算$A$和$B$的位移差,转换为步进电机的脉冲数和方向信号。例如: ```python theta = 2 * math.pi * t / T # T为运动周期 A = R * (math.cos(theta) + math.sin(theta)) B = R * (math.cos(theta) - math.sin(theta)) steps_motor1 = int((A - prev_A) / step_resolution) # step_resolution为每步位移量 steps_motor2 = int((B - prev_B) / step_resolution) ``` 3. **脉冲时序控制** 使用定时器中断生成脉冲信号(如引用[1]中提到的定时器配置),确保两电机同步。需根据最大速度限制调整中断频率,避免失步。 4. **方向控制优化** 根据$\Delta A$和$\Delta B$的正负号设置方向引脚。若使用微步驱动,需结合驱动器细分设置调整脉冲当量。 #### 4. **硬件设计要点** - **机械布局**:确保皮带张力均匀,避免运动过程中打滑。 - **参考环形布局算法**:如引用[2]中通过三角函数计算环形坐标,可优化路径生成的效率。 - **闭环反馈(可选)**:增加编码器反馈,校正累积误差(适用于高精度场景)。 #### 5. **示例代码片段(伪代码)** ```c // 初始化定时器和电机引脚(引用[1]) void setup() { pinMode(X_STEP_PIN, OUTPUT); pinMode(Y_DIR_PIN, OUTPUT); Timer1.initialize(pulse_interval); // 设置脉冲周期 Timer1.attachInterrupt(step_pulse); } // 中断服务函数生成脉冲 void step_pulse() { digitalWrite(X_STEP_PIN, HIGH); digitalWrite(Y_STEP_PIN, HIGH); delayMicroseconds(1); digitalWrite(X_STEP_PIN, LOW); digitalWrite(Y_STEP_PIN, LOW); } // 计算环形路径 void circular_move(float radius, float speed) { float theta = 0; while (theta < 2 * PI) { float x = radius * cos(theta); float y = radius * sin(theta); float a = x + y; // CoreXY转换 float b = x - y; set_motor_target(a, b); // 更新电机目标位置 theta += 0.01745; // 1度对应的弧度值 } } ``` ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值