3D渲染数学基础(1)坐标系

一、坐标系

  坐标系是描述空间位置的一种数学工具,可以用来定量地描述空间中点的位置。
  坐标系只是选取参考点、参考方向和基本单位后设置的一个空间定量描述工具,并不是固定且唯一不变的,坐标系的选取具有任意性。在一维空间、二维空间和三维空间都有各自适用的坐标系。

1. 一维坐标系

  一维空间是由一条直线上的所有点组成的空间,只有长度,空间向两边无限延伸。

1.1 数轴

在这里插入图片描述

在一维空间中选取参考点、参考方向和单位长度后,就可以定量地描述一维空间中的点。

  • 在一维空间中选取一个点作为参考点,这个点叫做 原点(Origin),用来表示 0 0 0
  • 选取一个方向作为正方向,则相反方向为负方向。从原点往正方向上的点,其数值为正且不断增加;从原点往负方向上的点,其数值为负且不断减小。
  • 再选取一个适当的长度作为单位长度,距离一个单位长度的两个点,其数值相差 1 1 1

由此便构造了一个可以描述一维空间的数轴。数轴常见形式如上图所示。

  在无外部条件设定下,数轴通常以向右为正,在实际运用中,数轴正方向可以任意。

2. 二维坐标系

  二维坐标系用于描述二维空间(平面),最常见的有平面直角坐标系极坐标系两种。

2.1 平面直角坐标系(笛卡尔直角坐标系)

  平面直角坐标系也叫笛卡尔直角坐标系(Cartesian Coordinate System),用于描述二维平面。(另有笛卡尔斜角坐标系,不常用)

  平面直角坐标系由两条相互垂直、原点重合并且单位长度相等的坐标轴构成,是数学上最常用的一种二维坐标系。
  两条坐标轴的相交点称为原点,通常标记为 O O O (Origin的首字母)。

在这里插入图片描述

  水平方向的轴称为 横轴,通常用 x x x 标记,也称为 x x x 轴 (x-axis),向右为正。过平面上一点作 x x x 轴 的垂线,与 x x x 轴 交点的值称为该点的 横坐标 x x x 坐标
  竖直方向的轴称为 纵轴,通常用 y y y 标记,也称为 y y y 轴 (y-axis),向上为正。过平面上一点作 y y y 轴 的垂线,与 y y y 轴 交点的值称为该点的 纵坐标 y y y 坐标
  两个坐标轴决定了一个平面,称为 x y xy xy平面,又称为 笛卡尔平面

2.1.1 点的直角坐标

  平面上点的横坐标 x x x 和纵坐标 y y y 组成了点的直角坐标,记为 ( x , y ) (x, y) (x,y)
  如下图,平面上 A A A 点的坐标为 ( 2 , 3 ) (2, 3) (2,3)
在这里插入图片描述

2.1.1.1 象限

  坐标轴将平面分成了四个区域,每个区域称为象限(Quadrant)
  以原点为中心,以 x x x 轴、 y y y 轴为分界线,共分为四个象限。右上的称为第一象限,左上的称为第二象限,左下的称为第三象限,右下的称为第四象限。象限用罗马数字进行标序: I , I I , I I I , I V \mathrm{I, II, III, IV} I,II,III,IV

原点和坐标轴上的点不属于任何象限。

  每个象限的横坐标和纵坐标都有固定的符号(正或负),例如第一象限内的点的横坐标和纵坐标都为正,第二象限内的点横坐标为负、纵坐标为正。

在这里插入图片描述

  设 ( x , y ) (x,y) (x,y)为象限中的一点,则有

象限坐标 ( x , y ) \left( x,y \right) (x,y)坐标符号
第一象限 x > 0 , y > 0 x > 0, y > 0 x>0,y>0 ( + , + ) \left( +,+ \right) (+,+)
第二象限 x < 0 , y > 0 x < 0, y > 0 x<0,y>0 ( − , + ) \left( -,+ \right) (,+)
第三象限 x < 0 , y < 0 x < 0, y < 0 x<0,y<0 ( − , − ) \left( -,- \right) (,)
第四象限 x > 0 , y < 0 x > 0, y < 0 x>0,y<0 ( + , − ) \left( +,- \right) (+,)

2.2 极坐标系

  在平面内取一定点 O O O 作为基准点,称为极点,从 O O O 点引一条射线,以射线方向作为基准方向,称该射线为极轴。选定单位长度和角的正方向(通常取逆时针方向为正方向)后, 就可以确定一个平面极坐标系,简称极坐标系

在这里插入图片描述

2.2.1 点的极坐标

  对于平面上任意一点 P P P,则线段 O P OP OP 的长度 ρ \rho ρ 称为点 P P P极径(即到极点的距离),极轴 O x Ox Ox 逆时针旋转到射线 O P OP OP 所需的角度 θ \theta θ 称为点 P P P极角。点 P P P 的极坐标表示为 ( ρ , θ ) (\rho, \theta) (ρ,θ)

在这里插入图片描述

  极径取值范围为: ρ ⩾ 0 \rho \geqslant 0 ρ0
  极角可以取任意值(实数)。极轴逆时针旋转 n n n 周,角度 θ \theta θ 增加 2 n π 2n \pi 2。逆时针旋转的角度 θ \theta θ 为负。但一般都将极角 θ \theta θ 取值限制在 [ − 2 π , 2 π ] \left[-2\pi, 2\pi \right] [2π,2π] 范围内,通常取 [ 0 , 2 π ] \left[0, 2\pi \right] [0,2π]

2.2.2 极坐标与直角坐标之间的关系

  原点重合、极轴与 x x x 轴正向重合并且单位长度相等的两种坐标系如下图所示。
  由勾股定理可得 ρ 2 = x 2 + y 2 \rho ^2=x^2+y^2 ρ2=x2+y2,由三角函数定义可得 { cos ⁡ θ = x ρ sin ⁡ θ = y ρ , ( ρ ≠ 0 ) \left\{ \begin{aligned} \cos \theta &=\frac{x}{\rho}\\ \sin \theta &=\frac{y}{\rho}\\ \end{aligned}, \left(\rho \neq 0 \right) \right. cosθsinθ=ρx=ρy,(ρ=0)

在这里插入图片描述

  由此可以得到极坐标与直角坐标转换之间的转换关系:
{ x = ρ cos ⁡ θ y = ρ sin ⁡ θ (1.2.2.2.1) \left\{ \begin{array}{c} x=\rho \cos \theta\\ y=\rho \sin \theta\\ \end{array}\right. \tag{1.2.2.2.1} {x=ρcosθy=ρsinθ(1.2.2.2.1) { ρ = x 2 + y 2 tan ⁡ θ = y x , ( x ≠ 0 ) (1.2.2.2.2) \left\{ \begin{aligned} \rho &=\sqrt{x^2+y^2}\\ \tan \theta &=\frac{y}{x}, \left( x\ne 0 \right)\\ \end{aligned} \right. \tag{1.2.2.2.2} ρtanθ=x2+y2 =xy,(x=0)(1.2.2.2.2)
  当 x = 0 x=0 x=0 y ≠ 0 y \neq 0 y=0时,由 y y y的符号即可直接得出:

  • y > 0 y > 0 y>0 时, θ = 90 ° ( π 2 ) \theta=90\degree(\dfrac{\pi}{2}) θ=90°(2π);
  • y < 0 y < 0 y<0 时, θ = 270 ° ( 3 π 2 ) \theta=270\degree(\dfrac{3\pi}{2}) θ=270°(23π)

3. 三维坐标系

  描述三维空间的三维坐标系有空间直角坐标系、柱面坐标系和球面坐标系等,其中空间直角坐标系是数学上最常用的坐标系。

3.1 空间直角坐标系

  空间直角坐标系 是在平面直角坐标系的基础上,根据右手定则增加第三条坐标轴( z z z 轴)形成的。

三条坐标轴相互垂直、原点重合且具有相等的单位长度,分别是 x x x 轴(横轴), y y y 轴(纵轴) 和 z z z 轴(竖轴)。 x x x 轴、 y y y 轴和 z z z 轴的朝向满足右手定则,三条坐标轴相交于原点 O O O。由原点 O O O,坐标轴 x , y , z x, y, z x,y,z 构成的空间直角坐标系称为 空间直角坐标系 O − x y z O\mathrm{-}xyz Oxyz

在这里插入图片描述
  在几何中,空间直角坐标系三个坐标轴的朝向一般为 z z z轴朝上, y y y轴朝右, x x x轴朝后(读者面向屏幕,x轴指向读者身后)。坐标系也可以旋转至其它朝向。空间直角坐标系有时只画坐标轴的正半轴,负半轴省略不画。空间直角坐标系如下所示:(因为需要在二维的纸张或屏幕上表示三维,所以一般都以斜二测画法来画空间图形。)
在这里插入图片描述

3.1.1 点的空间直角坐标

  建立了空间直角坐标系之后,就可以利用坐标系定位空间中的点。

  设点 P P P 为空间中的一点,过点 P P P 分别作垂直于 x x x 轴、 y y y 轴和 z z z 轴的平面,三个平面与 x x x 轴、 y y y 轴和 z z z 轴的交点分别为点 A A A、点 B B B 和点 C C C,称 A 、 B 、 C A、B、C ABC 分别为点 P P P x x x 轴、 y y y 轴和 z z z 轴上的投影。
在这里插入图片描述
  又设点 A 、 B 、 C A、B、C ABC x x x 轴、 y y y 轴和 z z z 轴上对应的值依次为 x x x, y y y z z z,则点 P P P 便可以用一个有序数组 ( x , y , z ) \left( x, y, z \right) (x,y,z) 来确定。反之,如果给出一个有序数组 ( x , y , z ) \left( x, y, z \right) (x,y,z),就能在每条坐标轴上过值对应点做垂直于轴的平面,三个平面的交点即为有序数组 ( x , y , z ) \left( x, y, z \right) (x,y,z) 所确定的点。由此有序数组和空间点就能建立一一对应的关系,称 有序数组 ( x , y , z ) \left( x, y, z \right) (x,y,z) 为点 P P P 的坐标,记为 P ( x , y , z ) P\left( x, y, z \right) P(x,y,z)

  坐标 ( x , y , z ) \left( x, y, z \right) (x,y,z) 中的 x x x 称为横坐标 y y y 称为纵坐标 z z z 称为竖坐标

3.1.2 坐标面

  在空间直角坐标系所表示的三维空间中,每两个坐标轴可确定一个空间平面,共确定了三个空间平面,统称为坐标平面,简称坐标面

  由 x x x 轴和 y y y 轴确定的平面称为 x O y xOy xOy 平面
  由 x x x 轴和 z z z 轴确定的平面称为 x O z xOz xOz 平面
  由 y y y 轴和 z z z 轴确定的平面称为 y O z yOz yOz 平面

在这里插入图片描述

在这里插入图片描述

3.1.3 卦限

  三个坐标面把整个空间分成八个部分,每个部分称为卦限(Octant),按一定顺序对这些卦限进行标记,分为第一卦限至第八卦限。

  三个坐标面和原点不属于任何卦限。

  以 x O y xOy xOy 平面为分界线, z > 0 z>0 z>0 的区域包含第一卦限至第四卦限, z < 0 z<0 z<0 的区域包含第五卦限至第八卦限。

在这里插入图片描述

  逆着 z z z 轴朝 x O y xOy xOy 平面看,可以看到空间直角坐标系中卦限的顺序和平面直角坐标系中象限的顺序是一致的。

在这里插入图片描述

3.1.3.1 卦限中坐标的符号

  每个卦限中,坐标的符号都是固定的。从卦限的排布我们可以得到不同卦限中坐标的符号关系:

卦限坐标 ( x , y , z ) \left( x,y, z\right) (x,y,z) 正负 ( x , y , z ) \left( x,y, z\right) (x,y,z) 坐标符号
第一卦限 x > 0 , y > 0 , z > 0 x>0, y>0,z>0 x>0,y>0,z>0 ( + , + , + ) \left( +,+, + \right) (+,+,+)
第二卦限 x < 0 , y > 0 , z > 0 x<0, y>0,z>0 x<0,y>0,z>0 ( − , + , + ) \left( -,+, + \right) (,+,+)
第三卦限 x < 0 , y < 0 , z > 0 x<0, y<0,z>0 x<0,y<0,z>0 ( − , − , + ) \left( -,-, + \right) (,,+)
第四卦限 x > 0 , y < 0 , z > 0 x>0, y<0,z>0 x>0,y<0,z>0 ( + , − , + ) \left( +,-, + \right) (+,,+)
第五卦限 x > 0 , y > 0 , z < 0 x>0, y>0,z<0 x>0,y>0,z<0 ( + , + , − ) \left( +,+, - \right) (+,+,)
第六卦限 x < 0 , y > 0 , z < 0 x<0, y>0,z<0 x<0,y>0,z<0 ( − , + , − ) \left( -,+, - \right) (,+,)
第七卦限 x < 0 , y < 0 , z < 0 x<0, y<0,z<0 x<0,y<0,z<0 ( − , − , − ) \left( -,-, - \right) (,,)
第八卦限 x > 0 , y < 0 , z < 0 x>0, y<0,z<0 x>0,y<0,z<0 ( + , − , − ) \left( +,-, - \right) (+,,)

3.2 柱面坐标系

  柱面坐标系是在极坐标系的基础上,添加一条与极坐标平面垂直的坐标轴而构成的。这条坐标轴的原点与极坐标系的极点重合、单位长度一致且朝向满足右手定则。

  设在柱面坐标空间中有一点 P P P,点 P P P 在极坐标平面上的投影为点 P ′ P' P
  设点 P ′ P' P 在极坐标系中的坐标为 ( ρ , θ ) \left( \rho, \theta \right) (ρ,θ)。过点 P P P 做垂直于 z z z 轴的平面,设平面与 z z z 轴的交点在 z z z 轴上对应的值为 z z z,则 P P P 的柱面坐标 ( ρ , θ , z ) \left( \rho, \theta, z\right) (ρ,θ,z)

坐标取值范围
ρ \rho ρ 0 ⩽ ρ < + ∞ 0\leqslant \rho <+\infty 0ρ<+
θ \theta θ 0 ⩽ θ ⩽ 2 π 0\leqslant \theta \leqslant 2\pi 0θ2π
z z z − ∞ < z < + ∞ -\infty <z<+\infty <z<+

在这里插入图片描述

3.2.1 柱面坐标与空间直角坐标之间的关系

 柱面坐标 ( ρ , θ , z ) \left( \rho, \theta, z\right) (ρ,θ,z) 与空间直角坐标 ( x , y , z ) \left( x, y, z\right) (x,y,z) 的转换:

  • z z z 值不变。
  • 其它两个相当于是平面直角坐标 ( x , y ) \left( x, y\right) (x,y) 与极坐标 ( ρ , θ ) \left( \rho, \theta\right) (ρ,θ) 之间的转换。

若点 P P P 的柱面坐标为 ( ρ , θ , z ) \left( \rho, \theta, z\right) (ρ,θ,z),则对应的空间直角坐标 ( x , y , z ) \left( x, y, z\right) (x,y,z) 为:
{ x = ρ cos ⁡ θ y = ρ sin ⁡ θ z = z (3.2.1.1) \left\{ \begin{aligned} x&=\rho \cos \theta\\ y&=\rho \sin \theta\\ z&=z\\ \end{aligned} \right. \tag{3.2.1.1} xyz=ρcosθ=ρsinθ=z(3.2.1.1)

同时可以得到如下关系:
{ ρ = x 2 + y 2 , tan ⁡ θ = y x , ( x ≠ 0 ) z = z (3.2.1.2) \left\{ \begin{aligned} \rho &=\sqrt{x^2+y^2},\\ \tan \theta &=\frac{y}{x}, \left( x\ne 0 \right)\\ z&=z\\ \end{aligned} \right. \tag{3.2.1.2} ρtanθz=x2+y2 ,=xy,(x=0)=z(3.2.1.2)
在这里插入图片描述

3.3 球面坐标系

  在极坐标系的基础上添加一个垂直于极坐标平面并且与极轴 O x Ox Ox 满足右手定则的 z z z 轴,就构成了球面坐标系 z z z 轴与极坐标系的单位长度一致,球面坐标系原点为 O O O
  设空间中有一点 P P P,点 P ′ P' P 为点 P P P 在极坐标平面上的投影。径向距离 r r r 为线段 O P OP OP 的长度,天顶角 φ \varphi φ 为射线 O P OP OP z z z 轴正方向的夹角,方位角 θ \theta θ x x x 轴到射线 O P ′ OP' OP 逆时针(逆着 z z z 轴朝向极坐标平面)转过的角度,则 P P P 的球面坐标 ( r , φ , θ ) \left( r, \varphi , \theta\right) (r,φ,θ)

球面坐标含义取值范围
径向距离 r r r P P P 到原点 O O O 的距离 r ⩾ 0 r \geqslant 0 r0
天顶角 φ \varphi φ射线 O P OP OP z z z 轴正方向之间的夹角 0 ⩽ φ ⩽ π 0\leqslant \varphi \leqslant \pi 0φπ
方位角 θ \theta θ x x x 轴到射线 O P ′ OP' OP 逆时针转过的角度 0 ⩽ θ ⩽ 2 π 0\leqslant \theta \leqslant 2\pi 0θ2π

在这里插入图片描述

3.3.1 球面坐标与空间直角坐标之间的关系

  通过观察球面坐标与空间直角坐标,可以得到如下关系:
{ x = r sin ⁡ φ cos ⁡ θ y = r sin ⁡ φ sin ⁡ θ z = r cos ⁡ φ (3.3.1.1) \left\{ \begin{aligned} x&=r\sin \varphi \cos \theta\\ y&=r\sin \varphi \sin \theta\\ z&=r\cos \varphi\\ \end{aligned} \right. \tag{3.3.1.1} xyz=rsinφcosθ=rsinφsinθ=rcosφ(3.3.1.1)
{ r = x 2 + y 2 + z 2 tan ⁡ φ = x 2 + y 2 z , ( z ≠ 0 ) tan ⁡ θ = y x , ( x ≠ 0 ) (3.3.1.2) \left\{ \begin{aligned} r&=\sqrt{x^2+y^2+z^2}\\ \tan \varphi &=\frac{\sqrt{x^2+y^2}}{z}, \left( z \ne 0 \right)\\ \tan \theta &=\frac{y}{x}, \left( x \ne 0 \right)\\ \end{aligned} \right. \tag{3.3.1.2} rtanφtanθ=x2+y2+z2 =zx2+y2 ,(z=0)=xy,(x=0)(3.3.1.2)

在这里插入图片描述

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

依稀_yixy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值