二维笛卡尔坐标系下的角的概念

参考

项目描述
搜索引擎GoogleBing
百度百科首页
韩庆波正负角
佟大大还是ETT【三角函数平面向量解三角形数列基础篇】—2024届高考数学教辅抢先看版

环境

项目描述
GeoGebra 经典 66.0.779.0

笛卡尔坐标系

笛卡尔坐标系是由法国哲学家和数学家 笛卡尔(René Descartes)17 世纪提出的一种几何表示方法。笛卡尔通过引入坐标系,将 几何问题 转化为 代数问题,从而 使得几何问题的分析和计算成为可能

二维笛卡尔坐标系

二维笛卡尔坐标系 中,平面被划分为两个 垂直 的轴,这两个轴通常被称为 X 轴Y 轴。X 轴 水平 延伸,Y 轴 垂直 延伸,两个轴的交点被称为 原点
在二维笛卡尔坐标系中,每个点的 坐标 都可以用一对有序数对 (x, y) 表示,其中 x 表示点在 X 轴上的水平位置,y 表示点在 Y 轴上的垂直位置。

三维笛卡尔坐标系

三维笛卡尔坐标系在二维笛卡尔坐标系的基础上增加了 一个垂直于二维平面的轴,通常称为 Z 轴。X 轴、Y 轴和 Z 轴相 互垂直,并在原点处交叉。每个点的坐标都可以通过一个三元组 (x, y, z) 进行表示,其中 x 表示点在 X 轴上的水平位置,y 表示点在 Y 轴上的垂直位置,z 表示点在 Z 轴上的垂直位置。

任意角

角的静态定义

具有公共端点的两条射线组成的图形叫做角,这个公共端点叫做 角的顶点,这两条射线叫做 角的两条边
在由 角的静态定义 所统领的角度度量系统中,角的大小通常被 限定

[ 0 ∘ , 36 0 ∘ ] [0^\circ, 360^\circ] [0,360]

范围

角的动态定义

一条射线绕着它的端点从一个位置 旋转 到另一个位置所形成的图形叫做角,旋转射线所围绕的端点被称为 角的顶点,射线开始旋转的位置称为 角的始边,终止位置的称为 角的终边
在角的动态定义中,角是由射线旋转得到的。在形成角的过程中,射线 旋转的次数 可以不足一圈,也可以超过一圈。这也意味着,在角的动态定义下,角的大小不再具有限制性

二维笛卡尔坐标系下角的概念

角是由一条射线绕着它的 端点 从一个位置 旋转 到另一个位置所形成的图形。在这个旋转过程中,射线围绕着旋转的端点被称为 角的顶点,射线进行旋转的开始位置被称为 角的始边,射线停止旋转的位置被称为 角的终边

在二维笛卡尔坐标系中,我们 通常 将角的始边与 x 轴的 正半轴 重合,角的顶点与坐标系的 原点 重合。当然,这只是一个便于进行学术交流的约定,而不是必须遵循的准则。

方向

二维笛卡尔坐标系提供了一个更具描述性的框架(以 x 轴正半轴为始边,以终边相对始边旋转的方向定义角的 正负性),使得我们能够描述角度的 方向

正角、负角及零角

由角的动态定义及二维笛卡尔坐标系所提供的方向定义,角的概念也被扩展为了 任意角,任意角具体可分为正角、负角和零角。

请添加图片描述

类型描述
正角正角是指角的始边与 x 轴正半轴重合,并且角的终边相对角的始边 逆时针方向 旋转得到的角。正角的度数是一个 正值,并且这个值 不存在大小限制
负角负角是指角的始边与 x 轴正半轴重合,并且角的终边相对角的始边 顺时针方向 旋转得到的角。负角的度数是一个 负值,并且这个值 不存在大小限制
零角零角是指始边与 x 轴正半轴重合,并且 角的终边也与角的始边重合的角。但并不是所有角的终边也与角的始边重合的角(如 36 0 ∘ 360^\circ 360 72 0 ∘ 720^\circ 720)都可以称之为零角。要明确一点,零角是角的两条射线 没有发生旋转 而产生的角。

象限角

象限

象限(Quadrant)是笛卡尔坐标系中 横轴 X纵轴 Y 所划分的四个 区域,每一个区域叫做一个象限。
以右上角的区域为 起点,以 XY 轴为 分界线,将笛卡尔坐标系 依次划分 为四个区域,这四个区域分别称为第一象限、第二象限、第三象限及第四象限。

象限角

在二维笛卡尔坐标系中,根据 角的终边所在的象限,可以将象限角分为四个象限,即第一象限、第二象限、第三象限和第四象限。

注:

终边位于坐标轴上的角不属于任何象限。

终边相同角

圆心角

圆心角是指在圆心为 O 的圆中,过弧 A B AB AB 两端的半径所构成的 ∠ A O B \angle AOB AOB ,称为弧 A B AB AB 所对的圆心角。

终边相同角

终边相同角是指具有 相同 始边(始边均与 X 轴重合)与终边的角。若某一个角的大小为 α \alpha α,那么所有与该角互为终边相同角的集合为

{ θ   ∣   θ = α + 2 k π    ( k ∈ Z ) } \{\theta ~ |~ \theta = \alpha + 2k \pi ~~ (k \in Z) \} {θ  θ=α+2  (kZ)}

其中:

  1. Z 代表一个整数集合,而 k ∈ Z k \in Z kZ 则表示 k 为一个整数。

  2. 2 π 2 \pi 2π 是以弧度(而不是角度)为单位对角的大小进行的描述。 2 π 2 \pi 2π 换算为角度后的结果为 36 0 ∘ 360^\circ 360

圆周长所对的圆心角为 36 0 ∘ 360^\circ 360。因此,无论终边的旋转方向如何,只要其旋转度数为 36 0 ∘ 360^\circ 360 的整数倍,那么终边所处的位置不变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BinaryMoon

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值