连续不等_第九讲 函数的连续性与函数的间断点

写在前面的话:

本讲主要内容讲了连续性的定义,及其三个衍生的表述方式,函数的几类间断点。

最后一个例题回顾了极限的保号性,是不是又有点生疏了?没关系,回过头再看看。反复研读,用心体会。

如果有错误的地方还请提出来,我会及时纠正。大家一起学习吧~

一、函数的连续性:

  • 函数连续定义:
    的某邻域内有定义,如果当自变量的增量
    趋近于零时,对应的函数增量
    也趋近于零,即
    ,则称函数
    点连续。

注:① 我们把

写成
,这样
就可以写成

②根据极限差的运算法则(戳我了解),我们把

变换一下就可以得到
,亦即
,最终可得

③ 当

时,
,注释②中的
又可以写成

所以综合以上①②③三个注解,得出如下三个等价的定义:

  1. 的某邻域内有定义,如果当自变量的增量
    趋近于零时,
    ,则函数
    点连续;
  2. 的某邻域内有定义,如果当自变量的增量
    趋近于零时,
    ,则函数
    点连续;
  3. 的某邻域内有定义,如果当自变量的增量
    趋近于零时,
    ,则函数
    点连续。

更多的情况下,我们一般使用第3个等价定义,我们用

语言来描述第3个等价定义:

的某邻域内有定义。如果对任意的
,总存在正数
,使当
相较极限定义中
,少了左半边大于
的部分,这样保证了
可以取值为
,即
存在
)时,不等式
,对比极限定义,有
,再根据本文第3个等价定义,也就恰好证明了函数
点连续。
  • 函数的单侧连续概念:

如果函数

左极限
存在且等于
,则称
点左连续;如果右极限
存在且等于
,则称
点右连续。

注:①函数在一点连续的充要条件是在该点处既左连续又右连续。

② 如果函数

在开区间
内每一点连续,则称
是开区间
上的连续函数,或称
在开区间
上连续;函数
在闭区间
连续,是指
在开区间
连续,且于左端点
右连续,右端点
左连续。关于左右端点连续的描述如下图所示:

b67f2defed4c044da4af1fdf2122f6fe.png

连续函数的例子:

(1)若

是多项式函数,我们前面证明过(戳我了解),对任意的
,有
,亦即多项式函数在任意一点处的极限值都等于该点处的函数值,故多项式函数于
内连续。

(2)若

为有理函数,由前面的证明知(戳我了解),只要
,便有
,因此有理函数在其定义域内是连续的。

(3)函数

内连续,下面给出证明:

证明:设

是区间
内任意一点,当
有增量
时,对应函数的增量
,由三角函数和差化积公式(戳我了解)

我们在第七讲重要极限1的证明过程中已经利用单位圆解释过(戳我了解),对于任意角度

,当
时有
,所以
即有不等式
,对此不等式使用夹逼准则(戳我了解)可知,当
时,
,根据函数连续定义知,函数
上是连续的。

(4)函数

上连续,证明过程与(3)中类似。

二、函数的间断点

设函数

的某去心邻域内有定义。如果
有下列三种情形之一:

1.在

处没有定义;

2.虽然在

处有定义,但
不存在;

3.虽然在

处有定义,且
存在 ,但

则函数

处不连续,称
的间断点。

注:实际上,以上三点本质上就是破坏了函数连续定义中

的三种不同情况,破坏了这个等式肯定就不连续了,从而是间断的了。

例1.正切函数

处没有定义,所以破坏了等式
,故
的间断点。又
,故称
无穷间断点

af81ebc70a380a05d3b13cc0eac4844a.png

例2.函数

在点
处没有定义,当
时,
,函数值在
之间变动无限多次,所以
称为函数
振荡间断点

f0159b07ce25e2e31dcbd04dfb2bed9d.png

例3.函数

在点
,没有定义,所以函数在
不连续,但
,如果补充点
,则函数在
处就连续了,所以
为该函数的
可去间断点

e322745a5d8d99267696a9b15d71469b.png

例4.函数

处有定义
,又
,所以
的间断点。但如果改变
处的函数值:
,则
点处连续,所以
可去间断点

d088ba7cfd51b5cba3c6d8353d7f9b57.png

例5.函数

处有定义,
,且
,左右极限都存在但是不相等,故
的间断点。因为
的图形在
有跳跃现象,故称
跳跃间断点

8febb92085c25397bd2403649000df3a.png

以上我们讨论了无穷间断点、振荡间断点、可去间断点和跳跃间断点。那么我们通常把这些间断点分为两大类:

① 如果

的间断点,左极限
与右极限
都存在(不一定相等),则称
为第一类间断点(可去间断点、跳跃间断点)。

②如果

左右极限有一个不存在或两个都不存在,则称
为第二类间断点(无穷间断点、振荡间断点)。

下面再补充一个例题:

例6:证明函数

在点
处连续且
,则存在
的某邻域
,使当
时,

证明:由于

处连续,所以
,由第七讲中极限的保号性定理之定理1'(戳我了解),存在
的某去心邻域
,使当
时,
,故当
时,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值