最优解程序_变分法(四)最优程序控制·最佳性能问题、庞特里亚金最大化原理、阻尼下的最优控制...

eb6b9b853d641820dd8680c05be0cf0c.png

封面:关维兴《海边儿童》

如果对您有一点帮助,请点赞、关注、打赏 : )

父级目录:

Hreyulog:目录·《变分法》​zhuanlan.zhihu.com
3a778490d63a2e39e777872430c26a23.png

上一节:

Hreyulog:变分法(三)极值曲线场、雅可比方程、魏尔斯特拉斯函数、条件极值与等周问题​zhuanlan.zhihu.com
7e33ca01d1ff577defc899c611ecdbc6.png

最优程序控制

引言

控制理论由两种类型的控制过程构成:程序控制和稳定控制。目前,这两个问题都存在多个解法,这使得我们可以提出选择最佳(某种意义上的最佳)控制的问题。为了选择这样的控制,通常在所有控制的集合上定义的某种泛函的引入质量判断标准,以解决将系统从初始状态转换为最终状态(对于程序控制)或稳定性(对于稳定控制)的问题。寻找最优控制的问题可以看作是寻找泛函的条件极值时的变分法问题。

设一个常微分方程组:

,这里矢量函数
二次连续可微。
——系统相位状态的矢量;
——控制动作的矢量。我们认为

同时有泛函

,变量
有某些自然的、技术上的限制,我们写作

进一步我们看在区间

上的过程,系统初始状态为
,终止状态
。曲线的情况可以写作以下形式:

,这里
-维空间的子集。

定义:控制

在泛函
最佳,若所有穿过点
和点
的控制使得泛函
可能的值中最小。

说明:已知,最优的控制不总是存在,若其存在必唯一。

根据所选泛函问题,找到最佳程序控制的任务有以下几种类型:

——拉格朗日问题(Задача Лагранжа):

——梅耶问题(Задача Майера):

——波尔扎问题(Задача Больца):

——最佳性能问题(задача оптимального быстродействия):

在这里未知。

一、最佳性能问题

看系统

,(1.1)在这里
。令
——可能的控制集合,而
——控制可能的数值集合。在空间
定义两个点
;令起始时刻为
。我们需要求可能的控制
,令系统(1.1)有解
,且满足条件:

,(1.2)且时间区隔
最小。点
——未知。若找到这样的控制,我们将其称作
速度最佳。最佳控制
的轨迹称作
最佳轨迹。时间
——
最佳时间区隔

该问题的解基于庞特里亚金最大化原理(принципе максимума Понтрягина)。

我们看哈密顿函数

(1.3)及
哈密顿(正则)方程组

(1.4)

庞特里亚金最大化原理为该解的必要条件。

最大化原理:

——速度最佳,
——最佳轨迹,
——最佳时间区隔。则有函数
,三个点
在区间
满足系统(1.4)和函数(1.3),
满足最大条件:
(1.5),

在这里,

当函数

上连续,且满足

函数

时问题(1.3)--(1.6)所有满足曲线条件(1.2)的解,叫作该问题的极值曲线。条件(1.5)表明,哈密顿函数(1.3)在控制上达到最大,速度最优。根据最大化原理,我们找最优解通过下述算法:

1.使用公式(1.3)建立函数

2.建立方程组(1.4)。

3.在条件(1.5)的帮助下,求解系统(1.4)的参数

4.求解满足条件(1.2)(1.6)的方程组的解。

我们看例子:

例一:需要求尽量短的时间,具有给定初始位置和给定初始速度的单位质量的点粒子移动到原点,在这种情况下,点粒子必须停止在它的结束位置。认为该控制在

运动的开始时刻

,在控制下的点运动方程,显然有:
。令
,得到方程组:

边缘条件:

。这里
——已知的数值,而数值
——未知。建立哈密顿函数:

现在求

解该方程组,得到

,
,
——某常数。

我们需要求

为何值时,式子
最大。根据
,最大最小若成立,其控制取其最大最小值,即:

,当
,当

也就是说我们得到

根据该公式,最优控制为有不超过两个恒定区间的分段常函数,直线

交于轴
不超过两次,

现在我们找出在运动的第一阶段应该是哪个符号,在第二阶段应该控制哪个符号; 找到切换控制的时刻以及该点到起点的时刻坐标。

看在

时数值
,系统:
。得到:

显然,对应

,变量为
的相轨迹,为族
下抛物线的一部分。

运动的方向

,由于
,则运动从下往上穿过。

同样的,

时:
。得到:

对应

,变量为
的相轨迹,为族
下抛物线的一部分。

运动的方向

,运动从上往下穿过。得到图像:

44d641b22e26f5e1286d12aa1b62ab92.png

如果起点位于切换线下方,则在运动的第一阶段,控制为正,其次是负。 如果起点位于切换线上方,则在运动的第一阶段为负,其次为正。

现在,我们可以轻松完成剩下的。我们建立了系统的相图,并标记了切换线和起点,可以在第一阶段和第二阶段确定控制的符号。

,即起始点在切换线下方。也就是说第一阶段的
,点
在族
上某个抛物线。根据条件
求出
。接着求切换时刻,即抛物线
与切换线的交点。显然,在该时刻
,在这里
。系统:

代入,根据
,可以得到切换时刻
。我们找到了第一阶段的最佳轨迹,用以下方程组定义:

第二阶段:

我们代入起始条件,由于最佳轨迹连续,则得到方程组:

现在我们定义了最佳轨迹的第二阶段。根据条件

我们得到控制将点移动到原点的最短时间。

二、阻尼下的最优控制

祖博夫(我们前系主任^_^)提出了最佳阻尼概念,将配合使用李雅普诺夫第二法和最佳控制理论的变分法问题。

我们看控制系统:

,(2.1)在这里
。假设在初始时刻
系统(2.1)为
; 即
,其中点
是已知的。我们从
类中选择一个控制,并为每个此类控制定义一个经过点
的系统(2.1)的解。用
表示该运动。

接着在以变量为

的空间上定义某曲面
。(2.2)

我们假设控制问题是将系统(2.1)在某未知时刻

从时间
的状态
转移到曲面。(2.2)

解决问题的控制

我们称作允许的。

我们还将考虑一个连续可微函数

,该函数表征了当前点到曲面
的距离。由于我们想将当前点转移到曲面
,因此显然,函数
对应于任何允许的控制的解减小。我们将尝试选择一个控制,以便在相应的在系统(2.1)的运动中,函数
下降最快。

定义一:控制

叫作函数
的阻尼最优,若沿着符合该控制系统(2.1)的解
,该函数以最快的方式下降。

显然,系统(2.1)递减函数

的速度为其全微分:

(2.3)

我们将

视为仅自变量为
的函数,而
为参数。我们选择
,使得
为最小值。我们将得到的控制代入系统(2.1),找到经过起始点的解

我们将获得的函数替换为控制
。如果
,则构造的控制为所需控制。

所考虑的问题与最佳性能问题密切相关。

定理:假设控制

相对于函数
的阻尼最佳,并且函数
在除曲面
之外所有地方为实、连续、正。假设对于任何允许的控制,函数
于系统(2.1)的都是可连续微分,并且
。那么控制
速度最佳,相应的轨迹也为最佳轨迹。

我们看例子:

例二:看方程组:

控制的限制有:

作为“曲面”

,我们选择原点,即,控制问题是将系统从某个初始点
转移到零。函数
表征距原点的距离:

我们从阻尼函数以及到原点时间的意义上找到了最佳控制:

我们在条件

找函数
的最小值,这是条件极值问题。我们构造拉格朗日函数:

由于我们认为

为参变量,则
的极小条件:

在这里

。因此,
.

然后从第二种关系得到系统:

,在这里

则,

。为了确定到达原点的时间,我们将系统的
方程乘以
并将
的和从1乘到

变换关系的左侧:

在这里,

最后一个关系表明,所构造的控制速度最佳。 从该关系式得出,

,然后
。 根据问题条件
,则时刻

例三:已知,刚体旋转方程有不动点,其坐标有:

在这里

——物体惯性张量;
——角速度向量;
——外力的控制时刻。

标量形式的系统有:

此处的相位坐标是角速度矢量的分量,而控制是矢量

的分量。

我们对控制作限制,令:

作为

,我们选择系统动能

我们从阻尼函数的意义上找到了最佳控制,假设在初始时刻

角速度矢量
的分量不同时等于零。不难看出:

求出向量

相对于向量
的分量的最小值。集合
是紧致的并且函数
是连续的。然后,根据维尔斯特拉斯定理,有最小值且
,或:

代入,初始条件

,由于
,则封闭系统有唯一的解
。将这些函数代入
的表达式,得到:
——所需的控制。

例四:给出方程组:

要求控制者将系统移到坐标原点,并限制

。 设到原点的距离为二次形式
。矩阵
可以轻松得到李雅普诺夫方程:

这里

——给定系统的矩阵。则,函数
写作
,我们求阻尼最佳的控制:

在条件
时函数
达到最小值,其控制为:

,当
;
,当

所需的最佳控制将采用

的形式。

553e9f3b3d2dde8cd898417663e16415.png

以上来自维列明教授(проф.Е.И.Веремей)审,契若娃(О.Н.Чижова),米谢诺夫(Б.А.Мисенов)编辑《控制论——变分法》(Теория управления---Часть 1 Вариационное исчисление)。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值