二元函数的泰勒公式

由于在学习过程中经常碰到二元的泰勒展开,深入了解二阶泰勒展开对今后金融工程及其他学习大有裨益。

一、定理

根据一元函数的泰勒展开式可得

定理

并且式子中的意思含义为:

二、定理的证明

① 为了利用一元函数的泰勒公式证明,此刻引入函数:

因此对其进行求导后有:

三、拉格朗日中值等式

 由于

四、应用

Example:

Solution 01:

Solution 02:

——Written in Baiyunshan

### 二元函数泰勒展开公式 对于一个充分光滑的二元函数 \( f(x, y) \),其在点 \( (a, b) \) 处的泰勒展开可以表示为: \[ f(x, y) = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x-a) + \frac{\partial f}{\partial y}(a, b)(y-b) + \frac{1}{2!} \left( \frac{\partial^2 f}{\partial x^2}(a, b)(x-a)^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a, b)(x-a)(y-b) + \frac{\partial^2 f}{\partial y^2}(a, b)(y-b)^2 \right) + \cdots \] 该公式的每一项分别对应于不同阶次的偏导数乘以其对应的变量增量幂次[^5]。 #### 示例:具体推导过程 考虑一个简单的二元函数 \( f(x, y) = e^{xy} \sin(y) \),我们希望将其在原点 \( (0, 0) \) 展开至二阶近似。按照上述公式逐步计算各阶导数并代入得到最终表达式。 1. **零阶项** 零阶项即为函数本身在展开点处的值: \[ f(0, 0) = e^{0 \cdot 0} \sin(0) = 0. \] 2. **一阶项** 计算关于 \( x \) 和 \( y \) 的偏导数,并评估它们在 \( (0, 0) \) 处的值: \[ \frac{\partial f}{\partial x} = ye^{xy}\sin(y), \quad \text{因此 } \frac{\partial f}{\partial x}(0, 0) = 0, \] \[ \frac{\partial f}{\partial y} = xe^{xy}\sin(y) + e^{xy}\cos(y), \quad \text{因此 } \frac{\partial f}{\partial y}(0, 0) = 1. \] 3. **二阶项** 继续计算混合偏导数以及纯二阶偏导数,在 \( (0, 0) \) 近邻区域内的贡献如下所示: \[ \frac{\partial^2 f}{\partial x^2} = y^2e^{xy}\sin(y), \quad \text{所以 } \frac{\partial^2 f}{\partial x^2}(0, 0) = 0, \] \[ \frac{\partial^2 f}{\partial x \partial y} = e^{xy}[y+x+y^2]\sin(y)+ye^{xy}\cos(y), \] 并且注意到当取极限接近初始位置时, \[ \frac{\partial^2 f}{\partial x \partial y}(0, 0)=0,\quad \frac{\partial^2 f}{\partial y^2}=xe^{xy}\cos(y)-e^{xy}\sin(y). \] 综合以上各项结果可得局部线性化后的简化形式,其中忽略了高阶无穷小部分的影响[^6]。 ```python import sympy as sp # 定义符号变量 x, y = sp.symbols('x y') # 原始函数定义 f = sp.exp(x * y) * sp.sin(y) # 执行泰勒级数展开操作 taylor_expansion = sp.series(f, x, 0, 3).removeO().series(y, 0, 3).removeO() print(taylor_expansion) ``` 运行此代码片段能够验证理论分析所得结论的一致性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值