二元函数的泰勒公式

由于在学习过程中经常碰到二元的泰勒展开,深入了解二阶泰勒展开对今后金融工程及其他学习大有裨益。

一、定理

根据一元函数的泰勒展开式可得

定理

并且式子中的意思含义为:

二、定理的证明

① 为了利用一元函数的泰勒公式证明,此刻引入函数:

因此对其进行求导后有:

三、拉格朗日中值等式

 由于

四、应用

Example:

Solution 01:

Solution 02:

——Written in Baiyunshan

我们可以将二元函数推广到 $n$ 元函数。设 $f(\boldsymbol{x})$ 是一个 $n$ 元函数,其中 $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ 表示 $n$ 个自变量。 首先,我们可以将 $f(\boldsymbol{x})$ 在点 $\boldsymbol{a}=(a_1,a_2,\cdots,a_n)$ 处进行一阶泰勒展开,得到: $$f(\boldsymbol{a}+\boldsymbol{h})=f(\boldsymbol{a})+\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\boldsymbol{a})h_i+o(\|\boldsymbol{h}\|)$$ 其中,$\boldsymbol{h}=(h_1,h_2,\cdots,h_n)$ 表示自变量的增量,$o(\|\boldsymbol{h}\|)$ 表示 $\|\boldsymbol{h}\|$ 的高阶无穷小。 对上式左侧进行变形,得到: $$f(\boldsymbol{a}+\boldsymbol{h})-f(\boldsymbol{a})=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\boldsymbol{a})h_i+o(\|\boldsymbol{h}\|)$$ 令 $\boldsymbol{k}=(k_1,k_2,\cdots,k_n)$,将 $\boldsymbol{h}=(h_1,h_2,\cdots,h_n)=(k_1-k_1,k_2-k_2,\cdots,k_n-k_n)$ 代入上式,得到: $$f(\boldsymbol{a}+\boldsymbol{k})-f(\boldsymbol{a})=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\boldsymbol{a})(k_i-a_i)+o(\|\boldsymbol{k}-\boldsymbol{a}\|)$$ 将上式左侧记为 $\Delta f(\boldsymbol{a},\boldsymbol{k})$,即: $$\Delta f(\boldsymbol{a},\boldsymbol{k})=f(\boldsymbol{a}+\boldsymbol{k})-f(\boldsymbol{a})$$ 则上式可写成: $$\Delta f(\boldsymbol{a},\boldsymbol{k})=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\boldsymbol{a})(k_i-a_i)+o(\|\boldsymbol{k}-\boldsymbol{a}\|)$$ 这个公式就是多元函数的一阶泰勒公式,它是二元函数的推广。其中,$\frac{\partial f}{\partial x_i}(\boldsymbol{a})$ 表示 $f(\boldsymbol{x})$ 对第 $i$ 个自变量在点 $\boldsymbol{a}$ 处的偏导数。 需要注意的是,上述公式中的 $o(\|\boldsymbol{k}-\boldsymbol{a}\|)$ 表示 $\|\boldsymbol{k}-\boldsymbol{a}\|$ 的高阶无穷小,即当 $\boldsymbol{k}\to\boldsymbol{a}$ 时,$o(\|\boldsymbol{k}-\boldsymbol{a}\|)$ 的阶数比 $\|\boldsymbol{k}-\boldsymbol{a}\|$ 更高。因此,当 $\boldsymbol{k}\to\boldsymbol{a}$ 时,$\Delta f(\boldsymbol{a},\boldsymbol{k})$ 迅速趋近于线性逼近式 $\sum_{i=1}^n\frac{\partial f}{\partial x_i}(\boldsymbol{a})(k_i-a_i)$,并且 $\boldsymbol{k}$ 与 $\boldsymbol{a}$ 的距离越近,这个线性逼近式的精度就越高。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值