关系代数表达式_【射影几何】第六谈——代数学下的射影变换

由于这一讲我真的不知道封面放啥了,所以就先不放封面了...

上次,我们从分析学的角度看了一下射影变换和射影几何,也许有相当一部分读者被刷新了世界观。那么这次我们紧接着从代数学的角度来看一下射影变换和射影几何吧,希望大家会有新的体会。

锐腾君个人专栏:https://zhuanlan.zhihu.com/return-mathe01

锐腾君的闲聊群:761522078


上期回顾

王锐腾-return:【射影几何】第五谈——分析学下的射影变换​zhuanlan.zhihu.com
584af2e9f5a927ce8f3a878af17c16b9.png
1.无穷大的定义,定号无穷大,不定号无穷大
2.广义实数系,扩大的实数系
3.Dedekind分割
4.无穷远元素
5.连续函数的定义,切线的定义
6.Heine定理
7.交点、切线都是射影性质
8.连续性原理

写在前面

很多人可能觉得相比分析,代数我肯定更加熟悉呀。但事实上真的是这样吗?

一般在中小学时讲授的初等代数,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

但是代数的研究对象不仅是数字,也包括各种抽象化的结构。代数学研究的对象一般包含数、数量、关系、结构与代数方程(组)的通用解法及其性质。

进入了高等代数学之后,我们不在拘泥于具体的实数或者是一些具体的多项式的性质,转而会去研究抽象的结构。比如一些常见的代数结构类型有群、环、域、模、线性空间等。

在这么一番介绍后,希望大家能够get到这一则回答的一些点。

QQ 群为什么叫 QQ 群,而不叫 QQ 环,QQ 域或者 QQ 格?​www.zhihu.com

另外,在阅读后面的一部分内容时,笔者会适当引入矩阵和行列式等线性代数的工具。如果还没有学过这部分知识的读者可以尝试着去了解一下矩阵和行列式。


群与射影变换群

一个代数结构,通常是满足某些性质一些集合和一些运算。这里我们希望通过一些具体的例子来让读者走近这些代数结构。

从实数乘法谈起

在这里,我们先从一些简单的例子入手。

我们从正实数的乘法谈起。由正实数集合

和它的乘法
组成的一个新的“带运算的集合体”我们记做
,我们现在就来看一下这个集合体。

正实数的乘法是封闭的,也即两个正实数的乘积还是正实数。

我们在小学的时候就知道,实数乘法是有结合律的。也即

我们知道,在正实数的乘法中,数字

是个很特殊的数字,因为任何数同
相乘都是原来的数字,所以我们经常取
作为单位的基准。也就是各位从小听到大的“单位

那么由这个

,我们又定义了倒数
,就是满足
的数。

而代数学上,我们就将这个结构抽象了出来,称为“群”

群的定义

定义1:称“带运算的集合体”
群(group),如果集合和它的二元运算满足:
(1).(运算的封闭性)

(2).(运算满足结合律)

(3).(存在 单位元

(4).(存在 逆元

在上述定义中,我们称

为一个
,并且称二元运算
为群的
乘法。在不引起歧义的情况下,我们可以简称为“群
”。在上述的(3)中的
被称为
单位元,(4)中的
被称为
逆元,记作

一般的群里,乘法不一定满足交换律,但是我们注意到在(3),(4)中,单位元和逆元参与运算时是一定满足交换律的。

我们再举个具体的例子,整数对加法就构成一个群

,其中单位元为
,任一整数
的逆元为

集合中有个重要的概念叫子集,因此,我们很自然地可以引出一个定义:

定义2:若集合
,且对于同样一个二元运算,
均构成一个群,那么我们称
子群

我们举个具体的例子,全体偶数集(

)对加法也构成一个群

由于

,因此,我们说
的一个子群(也简称为
的一个子群)

射影变换群

代数学上的“群”是一个普遍性比较高同时又比较漂亮的结构,它甚至能容纳我们之前提出的射影变换。

我们可以将射影平面上所有的射影变换定义为一个集合,暂且把它记为

吧(源于英语
Projective transformation group)
定义3:我们将射影变换的复合定义为他们的乘法
,且
表示先进行射影变换
,再进行射影变换
,即

我们定义了乘法以后,我们接下来就要证明:

定理1:射影平面上所有的射影变换对其乘法(复合运算)构成一个群
,并且我们称这个群为
射影变换群

根据群的定义,我们只需要证明集合和运算满足四性质即可。

(1).封闭性:任取

,它们都是由有限次中心投影复合而成,故复合以后仍是有限次中心投影的复合。所以

(2).结合律:先任取

,欲证
。那么任取射影平面的点
,则只需证

先看右侧,有

再看左侧,有

所以两边相等,结合律成立

(3).单位元存在性:取恒等映射

,使得对于射影平面上任意点
,都有

则显然

,再取一射影变换
,有

(4).逆元存在性:我们知道四点可以确定一个射影变换,因此,假设由

的射影变换为
;反过来,由
的射影变换为

在第四谈证明四点确定的射影变换唯一时,我们采用的交点法(将

利用直线转移成
的方法),我们可以知道,若记
,则
,也即

这时候我们就记

即可

综上所述,射影变换对复合运算构成一个群。我们将其称为射影变换群


用代数方法研究射影几何

这时候可能各位读者会开始感谢我分担了一部分火力在第一谈,否则可能脑子真的要炸了。

还记得齐次坐标吗?其实想到齐次坐标大家可能就会想起对偶原理。

所以有了齐次坐标以后,我们结合刚刚接触不久的射影变换,很快能够想到:

定理2:没有三线共点的四条直线能够确定一个射影变换

当然,这一部分的内容是为了让大家发现齐次坐标的其他作用。

利用代数方法求交比

由于点线的对偶性,将线坐标写出来可以用同样的方法求出线束的交比,所以下文我们只介绍点列的交比的求法。

我们假设共线四点

由于这四点共线,我们知道存在

,使得

三点共线)

三点共线)

下面,我们来证明一个定理,也就是交比的代数表达式:

定理3:满足上述条件的共线四点
的交比

我们期望通过通过不断“降阶”,把点转移到只需要考虑

坐标即可。

首先,我们不妨设

都不是无穷远点,如果是无穷远点,就采用一个点列去逼近这个无穷远点,根据连续性原理,定理同样适用。

据此,我们假定

都是通常点,所以不妨设

将四点坐标改写为非齐次坐标,即:

我们再在射影平面上以

点作为中心,进行中心投影,将四个点都投影到直线
上,也即

则四个点被中心投影为

由于中心投影交比不变,故:

射影变换的代数表达式

我们知道,射影平面上将共线三点映成共线三点,且共线四点的交比不变的变换一定是射影变换。现在我们有了交比的代数描述方式,现在我们可不可以利用这一点来给出射影变换的代数表达式呢?

定理4:平面上的射影变换
总可以写成这样一个形式:对射影平面上的点
,它的像为
,注意到坐标的其次性,故

其中,对于每一个点,都存在一个
,使得。

(如果用矩阵的语言即

并且

我们在这里以证一维的情况为例,二维的射影留给读者,因为读者自证不难(划掉)

我们取直线上不同的三点

,它们变换后的像为

由于

不重合,故存在
,使得

(因为上面的方程组是个六元一次方程组)

由于

共线,
共线,我们知道存在
,使得

且根据上面两个方程组,可得

下面我们证明,对直线上任意的点

和它的像
,均存在
,使得

由于这点还是和它们共线,故我们知道存在

,使得

结合射影变换保交比,有

我们只要令

,则有

这就说明了,对于任意一个一维射影变换,总可以将其写成

的形式

平面射影变换的情形就交给读者自己去完成

射影变换的非齐次坐标表达式

我们在上文中已经提到了射影变换的代数表达式,这里我们再将它写成大家熟悉的非齐次坐标的形式,就是:

定理5:将点
映成
(允许
)的平面射影变换可以写成

至于这种变换式中出现的表达式,我们有

定义4:对于
,且
,称
上的
分式线性变换

因此,在某种程度上,我们也可以认为射影变换是一个分式线性变换。


是不是读完这篇文章又觉得豁然开朗呢?但是锐腾君在写这个系列的初衷并不是为了教大家怎么样去计算,否则我为什么不叫它解析几何系列...

锐腾君的初衷是让更多读者从几何的形象思维上去接受射影几何,而不是让大家通过一味的计算,抹杀学习兴趣。所以接下来锐腾君也不会过多地强调代数工具的应用,因此我在讲射影变换的代数表示的时候并没有从过度矩阵开始讲起。

但是这并不妨碍我们从代数的角度去理解一些内容,比如我们回顾第四讲讲过的所有圆锥曲线在射影几何的意义下是等价的,那么大家可以尝试通过射影变换的代数表达式去尝试证明一下这一点。

到此为止,我们的射影几何基本原理和射影几何下的一次曲线已经讲完了。接下来我们就要开始讲射影几何下的二次曲线啦。希望大家还能继续关注我哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值