多视图几何笔记(二)射影变换

        射影映射是射影平面到它自身的一种满足下列条件的可逆映射h:三点x_{1},x_{2},x_{3}共线当且仅当h(x_{1}),h(x_{2}),h(x_{3})也共线。

        射影映射组成一个群,因为射影映射的逆以及两个射影映射的复合也是射影映射。射影映射也称为保线变换,或射影变换单应(homography)。

h(x)=Hx

        其中H为3x3的非奇异矩阵。

        射影变换:一个平面射影变换是关于3维齐次向量的一种线性变换,并可以用一个非奇异3x3矩阵表示:

\begin{pmatrix} x_{1}^{'}\\ x_{2}^{'}\\ x_{3}^{'} \end{pmatrix}=\left [ \begin{matrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{matrix} \right ]\begin{pmatrix} x_{1}\\ x_{2}\\ x_{3} \end{pmatrix}

        简洁的表示为x^{'}=Hx

        上式中矩阵H乘以任意一个非零尺度因子都不会使射影变换改变,因为H是一个齐次矩阵,这个和点的齐次表示有一样,有意义的仅仅是矩阵元素的比率。所以H的九个元素中有八个独立比率,因此有8个自由度

直线与二次曲线的变换

上面我们看到点的变换为x^{'}=Hx

而直线和二次曲线的变换是怎样的呢?

如果点x_{i}在直线l上,那么经过射影变换后的点x_{i}^{'}=Hx_{i}在直线l^{'}=H^{-T}l上。因为l^{'T}x_{i}^{'}=l^{T}H^{-1}Hx_{i}=0,点和直线的关联被保留。

在点变换x^{'}=Hx下,直线变换为

l^{'}=H^{-T}l

同样,在点变换x^{'}=Hx下,二次曲线的变换变为

x^{T}Cx=x^{'^{T}}\begin{bmatrix} H^{-1} \end{bmatrix}^{T}CH^{-1}x^{'}=x^{'^{T}}H^{-T}CH^{-1}x^{'}

由此得到二次曲线的变换规则:

C^{'}=H^{-T}CH^{-1}

等距变换-->相似变换-->仿射变换-->射影变换

1、等距变换

\begin{pmatrix} x^{'}\\ y^{'}\\ 1 \end{pmatrix}=\begin{bmatrix} \varepsilon cos\theta & -sin\theta & t_{x}\\ \varepsilon sin\theta & -cos\theta & t_{y}\\ 0& 0& 1 \end{bmatrix}\begin{pmatrix} x\\ y\\ 1 \end{pmatrix}

式中\varepsilon=\pm 1,如果\varepsilon =1,则该等距变换是保向的,也是欧式变换(平移和旋转的复合);如果\varepsilon =-1,则该等距变换是逆向的。

平面欧式变换简介的分块形式如下:

x^{'}=H_{E}x=\begin{bmatrix} R & t \\ 0^{T} & 1 \end{bmatrix}x

式中,R是2x2的旋转矩阵,t是平移向量。

欧式变换有三个自由度:旋转一个,平移两个;

不变量:长度、角度、面积;

2、相似变换

相似变换是一个等距变换和均匀缩放的复合。

\begin{pmatrix} x^{'}\\ y^{'}\\ 1 \end{pmatrix}=\begin{bmatrix} scos\theta & -ssin\theta & t_{x}\\ s sin\theta & -scos\theta & t_{y}\\ 0& 0& 1 \end{bmatrix}\begin{pmatrix} x\\ y\\ 1 \end{pmatrix}

其分块形式如下:

x^{'}=H_{s}x=\begin{bmatrix} sR & t \\ 0^{T} & 1 \end{bmatrix}x

上式中,标量s表示均匀缩放。

自由度:比欧式变换多一个自由度(缩放自由度);

不变量:夹角、长度比率、面积比率;

3、仿射变换

仿射变换是一个非奇异线性变换与一个平移变换的复合。

\begin{pmatrix} x^{'}\\ y^{'}\\ 1 \end{pmatrix}=\begin{bmatrix} a_{11} & a_{12}& t_{x}\\ a_{21} & a_{22}\ & t_{y}\\ 0& 0& 1 \end{bmatrix}\begin{pmatrix} x\\ y\\ 1 \end{pmatrix}

其分块形式:

x^{'}=H_{A}x=\begin{bmatrix} A & t \\ 0^{T} & 1 \end{bmatrix}x

式中,A是2x2非奇异矩阵。

仿射矩阵有六个自由度,对应于六个矩阵元素。

仿射变换中A矩阵可以理解为两个基本变换:旋转和非均匀缩放的复合

不变量:平行线、平行线段的长度比、面积比;

4、射影变换

射影变换是齐次坐标的一般非奇异线性变换,扩展了仿射变换,是非齐次坐标的一般非奇异线性变换和一个平移的复合。上面也提过,其矩阵形式如下:

\begin{pmatrix} x_{1}^{'}\\ x_{2}^{'}\\ x_{3}^{'} \end{pmatrix}=\left [ \begin{matrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{matrix} \right ]\begin{pmatrix} x_{1}\\ x_{2}\\ x_{3} \end{pmatrix}

其分块形式:

x^{'}=H_{p}x=\begin{bmatrix} A & t \\ V^{T} & v \end{bmatrix}x

最基本的射影变换不变量是四个共线点的交比

射影变换和仿射变换的根本区别在于射影变换中向量V不是零,是什么意思的?

我们来看下理想点(x_{1},x_{2},0)^{T}在仿射和射影变换下的映射。

在仿射变换下:

\begin{bmatrix} A &t \\ 0^{T} & 1 \end{bmatrix}\begin{pmatrix} x_{1}\\ x_{2}\\ 0 \end{pmatrix}=\begin{pmatrix} A\begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix}\\ 0 \end{pmatrix}

在射影变换下:

\begin{bmatrix} A &t \\ V^{T} & v \end{bmatrix}\begin{pmatrix} x_{1}\\ x_{2}\\ 0 \end{pmatrix}=\begin{pmatrix} A\begin{pmatrix} x_{1}\\ x_{2} \end{pmatrix}\\ v_{1}x_{1}+v_{2}x_{2} \end{pmatrix}

可以看出,对于仿射变换,理想点变换后还是理想点;对于射影变换,理想点被映射到有限点。说明射影变换能对消影点建模

5、射影变换的分解

射影变换可以分解为一串变换链的复合。

H=H_{S}H_{A}H_{P}=\begin{bmatrix} sR&t \\ 0^{T} & 1 \end{bmatrix} \begin{bmatrix} K&0 \\ 0^{T} & 1 \end{bmatrix} \begin{bmatrix} I&0 \\ V^{T} & v \end{bmatrix}=\begin{bmatrix} A & Vt\\ V^{T} & v \end{bmatrix}

可以看出上式中,H_{S}表示相似变换,H_{A}表示仿射变换,H_{P}表示射影变换。

  • 4
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

烟云之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值