句子分类_【分类复习】句子:06变换说法

点击上方蓝色文字关注我们吧~

87c3242e1c9b94bcfe5daf29d7e1acc9.gif 将句子变化说法有以下常见的题型: 1. 文明礼貌表达 例如: 在公共汽车上,看到一位老太太上车,一个小学生连忙让座,应怎么说呢? 应说:“老奶奶,请您坐这儿!” 注意点 :如说“喂,老太婆,坐这儿来!”就很没有礼貌。我们在与人交往时,要学会使用“请”“打扰”“对不起”“谢谢”“没关系”,接电话时,要用“您好!请问……”等。 2.句子合 例如: 1.年轻的妈妈请大夫。2.大夫给孩子看病。 合并后为:年轻的妈妈请大夫给孩子看病。 注意点 :第一句中动词“请”的后面是“大夫”,第二句句首也是“大夫”,所以去掉一个“大夫”。 3. 写有两个以上连续动作的句子 例如:战士们摸进山坳潜伏下来。 注意点 :这一句中有“摸”“潜伏”,是“战士们”的两个连续动作,这一类句子中间不加逗号。注意与这一句相区别:她一边看书,一边听音乐。这是同时进行的动作,无先后之分,因而不是表示连续动作。 4.变换提示语的位置 1. 我说:“爸爸,也许它不会死……”(提示语在前) 2. “爸爸!”我说,“也许它不会死……”(提示语在中间) 3. “爸爸,也许它不会死……” 我说。(提示语在句末) 注意点 :提示语位置 5.用修辞手法(比喻、拟人 ) 写一句话 注意点:要学会运用联想、想像,使句子生动形象。 以写下雨为例: 写法一:(比喻句) 一道道闪电划破漆黑的夜幕,一阵阵沉闷的雷声如同战鼓轰鸣,接着便下起了瓢泼大雨。 写法二:(拟人句) 一道闪电,一声清脆的雷鸣,天神犹如接到命令,立刻撕开天幕,把天河之水倾注到人间。

70a1ee1c6ba32f9dd5a9f770bc01224f.png

<think>好的,我需要向用户介绍如何基于LangChain开发一个Agent应用。首先,我得回忆一下LangChain的基本概念,以及Agent在其中扮演的角色。用户可能对LangChain有一定了解,但作为新手,他们需要一步步的指导。 首先,我应该明确AgentLangChain中的作用。Agent是能够根据输入动态选择工具并执行任务的智能体,它利用语言模型进行决策。接下来,开发一个Agent应用的基本步骤可能包括环境准备、安装依赖、选择语言模型、定义工具、创建Agent、集成链、测试优化和部署。 用户可能想知道具体每一步怎么做,比如如何安装LangChain,如何选择模型,比如OpenAI的模型或者开源的Hugging Face模型。这时候需要给出示例代码,比如安装命令pip install langchain openai,以及设置环境变量的例子。 然后定义工具部分,用户可能需要具体的工具示例,比如计算器或搜索引擎。这里需要说明如何用@tool装饰器创建自定义工具,或者使用预构建的工具,如SerpAPIWrapper。 创建Agent时,需要初始化语言模型,然后使用initialize_agent函数,并指定Agent类型,比如zero-shot-react-description。要解释参数的作用,比如tools、llm、agent、verbose等。 集成链的部分可能需要说明如何将Agent与其他模块结合,比如记忆模块或文档加载器,以处理复杂任务。这部分需要简明扼要,避免太深入细节。 测试和优化阶段,用户需要知道如何验证Agent的功能,比如输入问题并观察执行过程。同时,提示调整和参数优化也是重点,比如温度参数调整影响创造性。 部署部分要提到简单的命令行测试和实际的API服务部署,比如使用FastAPI封装,让用户了解后续步骤的可能方向。 还要考虑潜在的问题,比如工具的正确定义、API密钥的设置、错误处理等。可能需要提醒用户注意这些常见问题,避免开发中的障碍。 最后,总结整个流程,强调关键点,比如工具的定义、Agent的初始化和测试的重要性。确保用户有一个清晰的开发路线图,并鼓励他们根据需求扩展功能。 需要检查是否所有步骤都符合系统级指令,比如数学公式的正确使用,但在这个主题中可能涉及较少。确保所有代码示例用正确的格式,行内代码用反引号,独立代码块用三个反引号。同时保持语言口语化,避免专业术语堆砌,分步骤解释清楚。 可能还需要对比不同类型的Agent和工具,帮助用户根据需求选择。例如,不同类型的Agent(如zero-shot、conversational)适用场景不同,需要简要说明。 总之,结构要清晰,逐步引导用户从环境搭建到部署,每个步骤给出必要解释和示例,确保他们能够跟随操作并解决问题。同时提醒注意事项和优化技巧,提升应用的可靠性和效率。</think>以下是一步步指导你基于LangChain开发Agent应用的流程: ### 1. 环境准备 - 安装依赖库: ```bash pip install langchain openai python-dotenv ``` - 在`.env`文件设置API密钥(如OpenAI): ```python OPENAI_API_KEY="your_key_here" ``` ### 2. 初始化语言模型 ```python from langchain.llms import OpenAI from dotenv import load_dotenv load_dotenv() llm = OpenAI(temperature=0) # 控制输出随机性(0为确定性高) ``` ### 3. 定义工具(Tools) 工具是Agent执行任务的核心能力,可通过以下方式创建: **自定义工具示例** ```python from langchain.agents import tool @tool def custom_calculator(expression: str) -> float: """计算数学表达式,支持+-*/和括号""" try: return eval(expression) except: return "计算错误" ``` **使用预构建工具** ```python from langchain.utilities import SerpAPIWrapper search = SerpAPIWrapper() tools = [search] ``` ### 4. 创建Agent实例 ```python from langchain.agents import initialize_agent agent = initialize_agent( tools=tools, llm=llm, agent="zero-shot-react-description", # 零样本推理模式 verbose=True # 显示详细执行过程 ) ``` ### 5. 测试运行 ```python query = "北京当前温度是多少?换算成华氏度" result = agent.run(query) print(result) ``` 执行时会显示: ``` Thought: 需要先获取当前温度,再进行单位转换 Action: 调用搜索引擎 Observation: 北京当前气温25℃ Thought: 使用公式 (25×9/5)+32=77°F Final Answer: 北京现在25摄氏度,相当于77华氏度 ``` ### 6. 高级功能扩展 - **记忆模块**:添加`ConversationBufferMemory`实现多轮对话 ```python from langchain.memory import ConversationBufferMemory memory = ConversationBufferMemory() agent = initialize_agent(..., memory=memory) ``` - **文档处理**:结合`UnstructuredFileLoader`处理PDF/Word等文件 ```python from langchain.document_loaders import UnstructuredFileLoader loader = UnstructuredFileLoader("report.pdf") documents = loader.load() ``` ### 7. 性能优化技巧 - **提示工程**:通过`agent.agent.llm_chain.prompt`修改系统提示模板 - **参数调优**:调整`temperature`(0-1)平衡创造性与准确性 - **错误处理**:使用`try-except`包装工具函数捕获异常 ### 8. 部署应用 - **本地测试**:直接运行Python脚本 - **API服务化**:用FastAPI封装接口 ```python from fastapi import FastAPI app = FastAPI() @app.post("/ask") async def ask_agent(query: str): return {"response": agent.run(query)} ``` ### 关键概念说明 - **Agent类型**: - `zero-shot-react-description`:无历史记忆,适合简单任务 - `conversational-react-description`:支持多轮对话 - `self-ask-with-search`:自动验证中间结果 - **工具设计原则**: 1. 功能单一化(每个工具只做一件事) 2. 输入输出类型明确定义 3. 包含清晰的文档字符串(Agent根据描述选择工具) ### 常见问题排查 - **工具未被调用**:检查工具描述是否准确反映功能 - **API连接失败**:验证网络连接和密钥设置 - **无限循环**:设置`max_iterations=5`限制最大思考次数 通过以上步骤,你可以构建出能处理复杂工作流的智能体,例如: $$ 客户咨询 \rightarrow 语义解析 \rightarrow [数据库查询 \oplus 文档检索] \rightarrow 结果生成 $$ 其中$\oplus$表示并行操作,箭头表示流程顺序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值