两向量叉乘的计算公式_[飞控]聊点姿态(四)-向量叉乘究竟是个什么样的旋转?...

本文探讨了两向量叉乘产生的旋转特性,指出其转轴为N系但描述half与cur的误差,不同于常规的机体或地理系误差。这种旋转不能直接叠加,需转换为特定误差类型。APM和PX4对此有不同的处理方式,理解这一概念有助于深入解析飞控算法源码。
摘要由CSDN通过智能技术生成

0fdb59930085b7e056db7f84e603a775.png

两个向量叉乘可以得到一个转轴,点乘之后可以得到一个角度

一个转轴,一个角度我们可以得到一个旋转。

这是我们非常熟悉的一个思路,我们使用两个N系下的z轴叉乘,来得到一个对齐z轴的旋转。

但是这个旋转,是个什么样的旋转呢?

我们之前接触的旋转,都是坐标系旋转,这个旋转使得初始坐标系 cur,与目标坐标系,tar 的 z 轴重合了。

我们把这个中间状态叫做 half,也就是说这个旋转使得,cur 坐标系和 half 坐标系重合了。

正常来说如果我们会使用下式来描述机体坐标系之间的误差。

但是使用这种描述方式是有前提的,如果使用这个轴角表示这个旋转过程,这个旋转的转轴是属于 cur 系的,这就是就是我们常说的「机体系下的机体误差」。

同理如果我们描述地理系下的误差

b476263b3240dac92397c72c4acaf63f.png

用轴角表示的话,这个轴是属于 N 系的,我们可以称作「地理系下的地理误差」。

但是我们来看看这个叉乘后的旋转,这是两个 N 系下的 z 轴向量叉乘得到的旋转,所以他们的转轴是N系的。 但描述的是 half 与 cur 的误差。 跟我们通常说的机体误差是不一样的。

如果非要用一种方式来描述,应该是这样:

80d092846fe3f3269ce507fcc020e16f.png

叫做,可以叫做「地理系下的机体系误差」!

现在能看出这个旋转的特殊性了吗?

所以这个旋转是不能直接使用链式规则加在别的旋转上的哦。

想使用这个误差,必须把这个误差转换成「机体系下的机体误差」,或者「地理系下的地理误差」。

上次我们说了,APM就是把它转换成了,机体系下的机体误差,巧合的是PX4选择了后者。

ps:轴角的转轴经过旋转是不变的,它在两个坐标系间的坐标是一样的。

这个是 APM 或者 PX4 求解姿态误差里最具有迷惑的点,现在大家再去看源码,应该思路更加清晰了。

ok,今天就介绍这么多,我是zing,一个有趣的飞控算法工程师,更多干货,我们下期见。

关注一下吧

6659f7eaf6b51a7d6affcdf82bac9794.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值