周长为定长的所有平面四边形P中,面积最大的为正方形。

UTF8gbsn

周长为定长的所有平面四边形P中,面积最大的为正方形。

如何来证明这个问题?我在这里采用一种探索模型来证明它。我这里不使用《几何原本》中的从已知到未知的一种证明方式。而是采用一种不断把问题简化来引导我们思考的一种方式。

  • 假如,思考了一会这个问题之后,你没有什么思路怎么办?尝试简化这道题,比如,证明周长为L的所有长方形中,正方形面积最大。

    • 设长方形的长和宽为 x , y x,y x,y x + y = L x+y=L x+y=L

    • x y = S ⇒ S = x ( L − x ) = x L − x 2 = − ( x − L 2 ) 2 + L 2 4 xy=S \Rightarrow S=x(L-x)=xL-x^2=-(x-\frac{L}{2})^2+\frac{L^2}{4} xy=SS=x(Lx)=xLx2=(x2L)2+4L2

    • 由此可见, x = L 2 x=\frac{L}{2} x=2L S S S面积最大。

    这里我们就证明了所有周长为L的平面长方形中,正方形面积最大。

  • 顺着这个思路,我们可以考虑一下证明周长为L的平行四边形中,长方形最大。

    • 平行四边形的面积公式为-低 × \times ×

    • 任何一个平行四边形,可以掰正为长方形。斜边变成高。面积必然增大。

在这里插入图片描述

所以,平行四边形的面积小于相同边长的长方形。
  • 接下来我们来证明一般的四边形

    一般四边形分,凹四边形和凸四边形。

    • 我们很容易就可以证明任何的一个凹四边形,总可以找到一个边长一样的凸四边形来表示。且凸四边形的面积更大。

      在这里插入图片描述

    剩下的就是来证明一般的凸四边形了。如何来证明一个凸四边形,小于相同周长的正方形呢?不妨先证明它小于相同周长的平行四边形。如何把一个一般凸四边形按照周长不变变成一个平行四边形?

在这里插入图片描述

注意,图上的一般凸四边形和钻石形,还有菱形的周长都一样。图形变化是,先从黑色的四边形变换到虚线的钻石形,再从钻石型变换到菱形粉色。采用的变换方法是先根据绿色基准线变换上下两个三角形。然后再根据黑色基准线变换左右两个三角形。变换的过程中,基准线不变。然后调整三角形另外两条边是的它变成一个等腰三角形。整个过程三角形周长不变。

我们来证明一个辅助命题。**底边相同周长为L的三角形中,等腰三角形面积最大。**如果这个命题得证。我们的原问题就得到了解答。因为我们可以形成一条逻辑链条

凹四边形 ⩽ \leqslant 凸四边形 ⩽ \leqslant 钻石形 ⩽ \leqslant
平行四边形 ⩽ \leqslant 长方形 ⩽ \leqslant 正方形

有了这些命题,我们就可以最终证明周长相同的平面四边形中正方形面积最大。

让我们回到底边相同周长为L的三角形中,等腰三角形面积最大。

  • 底边相同,周长相同的一个三角形,什么时候面积最大?底边高最大的时候。

  • 设底边长为 b b b,另外两条边长度不变为 a a a.我们设其中一条长为 x x x,
    另一条为 a − x a-x ax.求 x x x为多少时 h h h最高.我首先尝试的是去列一个恒等式,企图用求极值的方法来解,但是最终失败了。
    x 2 − h 2 + ( a − x ) 2 − h 2 = b \sqrt{x^2-h^2}+\sqrt{(a-x)^2-h^2}=b x2h2 +(ax)2h2 =b

    • 最后改变策略,因为面积还有一个公式。因为围绕面积相关知识点应该都有用。所以不妨探索一下下面的公式。
      p ( p − a ) ( p − b ) ( p − c ) , p = a + b + c 2 \sqrt{p(p-a)(p-b)(p-c)},p=\frac{a+b+c}{2} p(pa)(pb)(pc) ,p=2a+b+c
      那么我们根据这个公式来求极值怎么样?

      p ( p − x ) ( p − a + x ) ( p − b ) = f ( x ) \sqrt{p(p-x)(p-a+x)(p-b)}=f(x) p(px)(pa+x)(pb) =f(x)

      p ( p − x ) ( p − a + x ) ( p − b ) = f 2 ( x ) , p = a + b 2 p(p-x)(p-a+x)(p-b)=f^2(x),p=\frac{a+b}{2} p(px)(pa+x)(pb)=f2(x),p=2a+b

      a + b 2 ( a + b 2 − x ) ( a + b 2 − a + x ) ( a + b 2 − b ) = f 2 ( x ) \frac{a+b}{2}(\frac{a+b}{2}-x)(\frac{a+b}{2}-a+x)(\frac{a+b}{2}-b)=f^2(x) 2a+b(2a+bx)(2a+ba+x)(2a+bb)=f2(x)

      整理一下得

      − 1 16 ( a − b ) ( a + b ) ( a − b − 2 x ) ( a + b − 2 x ) -\frac{1}{16} (a-b) (a+b) (a-b-2 x) (a+b-2 x) 161(ab)(a+b)(ab2x)(a+b2x)

      − 1 16 ( a 2 − b 2 ) ( a 2 − 4 a x − b 2 + 4 x 2 ) -\frac{1}{16}(a^2-b^2)(a^2-4 a x-b^2+4 x^2) 161(a2b2)(a24axb2+4x2)

      极值所在位置为 a 2 \frac{a}{2} 2a,也就是说边长一定,周长相同的三角形中等腰三角形面积最大。

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值