四元数姿态解算c语言例程_ESKF滤波器学习 -[1]四元数

本文介绍了四元数在姿态解算中的应用,详细阐述了四元数的定义、运算规则,包括单位元、共轭、模长等概念,并探讨了四元数的矩阵表示、对数映射及实数幂次。内容源自Joan Solà的大神论文,适合理解ESKF滤波器中四元数的数学基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

353e71b33498748d7f24f9c8bec59e98.png

最近大学火星车(其实是地球车)社团要我做一个定位模块,这个模块需要把三轴加速度,角速度,磁场以及气压得来的高度,GPS位置这13个数据融合在一起来获取位姿(位置+姿态)。

小葡萄:IMU & GPS定位 Quaternion kinematics for ESKF[part 3]​zhuanlan.zhihu.com
d12a5e485a9dbd568088e5a879bb1a29.png

我通过这篇文章了解到ESKF (Error State Kalman Filter) 算法能解决这个融合问题。我也开始阅读该文中引用的 Joan Sol`a 大神的 Quaternion kinematics for the error-state Kalman filter。文献可通过这个连接获取。

这篇文章基本是抄书+个人的一些见解,希望能对读者有所帮助吧。

四元数的定义

其中

为不同的虚数单位并且满足以下的性质:


文中的定义方法比较新颖:我们常见的复数形式是
,其中
为实数。四元数可以被定义为当
为虚数的情况,即

并且定义

,即可得到一样的表达式。

需要注意的是

之间的相乘不满足交换律。由
可以推出

四元数的运算

为了能用矩阵来表示四元数的运算,定义四元数

的向量形式

四元数是一种高效表示旋转的方式,在姿态中非常有用,因为它可以避免万向节死锁并且更节省计资源。下面是关于如何在C语言中利用四元数进行简单的姿态的一个简单例子: ```c #include <stdio.h> #include <math.h> // 定义四元数结构体 typedef struct { double w; double x; double y; double z; } Quaternion; // 函数用于将欧拉角转换成对应的四元数形式 void eulerAnglesToQuaternion(double roll, double pitch, double yaw, Quaternion* q) { // 角度转弧度并除以二 double cy = cos(yaw * 0.5); double sy = sin(yaw * 0.5); double cp = cos(pitch * 0.5); double sp = sin(pitch * 0.5); double cr = cos(roll * 0.5); double sr = sin(roll * 0.5); q->w = cr * cp * cy + sr * sp * sy; q->x = sr * cp * cy - cr * sp * sy; q->y = cr * sp * cy + sr * cp * sy; q->z = cr * cp * sy - sr * sp * cy; } int main() { Quaternion quaternion; // 示例输入的角度值 (单位: 弧度) double roll = M_PI / 4; // 绕X轴角度 double pitch = M_PI / 6; // 绕Y轴角度 double yaw = M_PI / 3; // 绕Z轴角度 // 执行从欧拉角到四元数的转换 eulerAnglesToQuaternion(roll, pitch, yaw, &quaternion); printf("根据给定的三个欧拉角得到对应四元数值为:\n"); printf("W:%f X:%f Y:%f Z:%f\n", quaternion.w, quaternion.x, quaternion.y, quaternion.z); return 0; } ``` 此段程序实现了基本的功能——把三维空间内的转动分成为绕着固定坐标系各轴的一系列旋转变换,并通过构造一个四元数表达这种变换。该示例仅作为入门级演示用途;实际应用时还需考虑更多细节如传感器融合、噪声处理等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值