蒙特卡洛模拟_蒙特卡洛模拟:材料性能的大规模预测

研究采用杂化蒙特卡洛算法对百万粒子体系进行结构预测和性能预测,对比Metropolis蒙特卡洛和热分子动力学,发现HMC在特定模型中表现优越。通过GPU并行化,实现对大型材料系统的高效模拟。
摘要由CSDN通过智能技术生成

9d000c9c1f95d74577d02e65dcf31e58.png

该研究采用杂化蒙特卡洛抽样算法对数百万粒子的大规模体系进行结构搜索和性能预测。来自美国阿肯色大学的Laurent Bellaiche团队,在有限温度下,对具有长程相互作用的固态系统(如铁电、弛豫铁电体和多铁材料)的有效哈密顿模型进行了杂化蒙特卡洛(HMC)采样。他们将结果与Metropolis蒙卡算法(MMC)和热分子动力学(MD)的结果进行了比较。他们发现,在选定的模型案例中,HMC方案明显优于MMC和MD。通过对面向GPU的并行化架构实现的HMC算法,可以对粒子数达到106的体系进行大规模的HMC仿真。该算法也可用于大规模密度泛函理论计算,从而开辟更广阔的应用前景。该文近期发表于npj Computational Materials 4: 80 (2018) 。

Editorial Summary原文

Monte Carlo simulations: scaling-up property prediction

A hybrid Monte Carlo sampling algorithm is adopted to predict structures and properties in large-scale simulations with millions of particles. A team led by Laurent Bellaiche from the University of Arkansas perform hybrid Monte Carlo (HMC) sampling on effective Hamiltonian models of solid-state systems with long-range interactions, such as ferroelectric, relaxor and multiferroic materials at finite temperatures. They compare the results with those obtained by the Metropolis Monte Carlo (MMC) algorithm and thermalized molecular dynamics (MD). They find that the HMC scheme significantly outperforms MMC and MD for selected model cases. By implementing the HMC algorithm for GPU-oriented parallelization architectures, they can perform HMC simulations for a large scale material simulations with the particle number reaching 106. This algorithm may also be implemented for large-scale density functional theory calculations so that a more broad space of applications might open. 

c75c01eed724b106e377752e5830bac0.png

原文Abstract及其翻译

Large scale hybrid Monte Carlo simulations for structure and property prediction (大规模杂化蒙特卡洛模拟预测材料的结构和性质)

Sergei Prokhorenko, Kruz Kalke, Yousra Nahas & Laurent Bellaiche

Abstract The Monte Carlo method is one of the first and most widely used algorithms in modern computational physics. In condensed matter physics, the particularly popular flavor of this technique is the Metropolis Monte Carlo scheme. While being incredibly robust and easy to implement, the Metropolis sampling is not well-suited for situations where energy and force evaluations are computationally demanding. In search for a more efficient technique, we here explore the performance of Hybrid Monte Carlo sampling, an algorithm widely used in quantum electrodynamics, as a structure prediction scheme for systems with long-range interactions. Our results show that the Hybrid Monte Carlo algorithm stands out as an excellent computational scheme that can not only significantly outperform the Metropolis sampling but also complement molecular dynamics in materials science applications, while allowing ultra-large-scale simulations of systems containing millions of particles.

摘要 蒙特卡洛方法是现代计算物理学中最早、应用最广泛的算法之一。在凝聚态物理中,这种技术最受欢迎的是Metropolis蒙卡方法。虽然Metropolis抽样方法具有很强的鲁棒性和可操作性,但它并不适用于能量和力的计算。为了寻找一种更有效的计算方法,本研究探索了杂化蒙特卡洛采样方法(一种广泛用于量子电动力学的算法)在长程相互作用系统的结构预测方案方面的能力。我们的研究结果表明,杂化蒙特卡洛算法是一种优秀的计算方案,其不仅显著优于Metropolis抽样方法,而且可以弥补材料科学应用中的分子动力学,同时允许对包含数百万个粒子的系统进行超大规模模拟计算。

9759eb01383592a2bb9f92e488b6cb9c.png

微信分享

7570ae08d349daed690d5540386012b3.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值