
安徽省淮北市第一实验小学 丁雪洁

课前慎思

本节课是人教版三年级上册第七单元的例5,是在学生已经认识了周长,并会计算长、正方形的周长的基础上进行教学的,通过运用四边形及周长的知识解决生活中的简单问题,进一步发展数学思考,提高学生解决问题的能力。学生解决问题的能力需要进行策略的指导,解决问题的策略也是在解决问题的过程中逐步形成和积累的。备课前,我首先让自己做回“学生”,思考课堂上的“我”可能会怎样思考、解答?我的第一反应是————“拼—算—比”,遇到这类问题,首先有序找出所有拼法,接下来求出周长再比较。像这样列出所有可能的结果来解决问题的策略,对三年级的学生而言,他有这样的策略意识吗?要提高学生解决问题的能力,教师需要进行怎样的引导呢?
为了找准教学起点,我抽取了不同程度的学生做了调查,参与调查的学生独立完成阅读题目信息,并思考打算怎样解决?调查结果是:参与调查的学生部分感觉无从下手,部分学生选择先尝试画一画或拼一拼,但画出的只是一个长方形和一个正方形两种情况。再深究这部分学生是怎么想的,学生回答是因为题目条件里要求拼长方形和正方形。有了这样的了解,我就在思考:能力的培养,策略的建构,首先应当建立在有效的思考上。小学阶段解决问题的教学,应重视学生策略的感悟,从形成策略意识开始,逐步积累。
《数学课程课标》明确指出: 借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。在整个备课过程中,为了突破“思考、能力”这两个关键词,从以下几方面做了尝试:
1、重视表象积累,让思维循序渐进发展。
学生在本单元的前一个例题中,刚刚积累了长、正方形周长的计算经验,于是课堂就从一个正方形的周长到两个正方形的周长之和,再到两个正方形拼成的长方形的周长。并对比思考:周长发生了什么变化?减少的2条边去了哪里?结合发现实际动手指一指,积累表象经验,让思维能够循序渐进地发展。
2、破除思维误区,为有效思考清除障碍。
阅读是一切知识学习的前提。学生在学习数学的过程中出现解题障碍及错误,很多时候在于对题目的不理解,从而造成了思维的误区,为接下来的有效思考设置了障碍,因此,要重视培养学生的数学阅读能力。本节课的例题对三年级孩子来说过长,不易断句,不容易理清题目要求,所以在处理时,先让学生完整阅读题目,再提炼关键字句,理清问题和条件之间的关系,养成这样的读题习惯,提高阅读的能力,提升思考的有效性。
3、追本溯源,讲清道理,提升思维品质。
数学课堂最应是讲理的地方,所以在操作探究的基础上,借助几何直观,引导学生感悟数量相同的小正方形拼成不同形状的图形后周长发生变化的原因,用语言表达自己的感悟,进一步探索变化规律。在分析问题、解决问题的过程中,拓展学生思维的深度和广度。
4、内化策略经验,让策略意识逐渐清晰。
虽然有了“16个小正方形拼长方形和正方形,怎样拼周长最短”解决问题的经验,但在解决“如果用12个小正方形拼,怎样拼周长最短?”这一问题时,学生无法直接运用例题中的规律去解决,所以这个情境再次引发了学生的数学思考,运用例题中的策略,有序找出不同的拼法,并结合规律去大胆猜测验证。在这个过程中,学生清晰了解决问题的策略,并内化策略经验,提升策略意识。

课中笃行

一、复习引入
1、回顾正方形和长方形周长的计算方法。
正方形的周长=边长×4
长方形的周长=(长+宽)×2
2、操作揭题。
(1)出示一个正方形并指出:这是一个边长为1分米的正方形,它的周长是———4分米。
(2)再出示一个相同的正方形,这两个正方形的周长共8分米。如果用这两个正方形拼成一个长方形,它的周长是多少?———6分米。
(3)对比思考:周长发生了怎样的变化?减少的2分米去了哪里?
(4)直观演示,积累表象。
学生发现:减少了2分米是因为周长里的其中两条边重合后从周长中“消失”了。并动手指一指“消失”的两条边。
(5)出示16个小正方形:如果用更多的小正方形去拼长方形和正方形,怎样拼才能使拼成的图形周长最短?(板书课题)
二、探究新知
(一)教学例5 :数形结合,解决问题。
1、出示例题,读题分析
用16张边长是1分米的正方形纸拼长方形和正方形,怎样拼,才能使拼成的图形周长最短?
师:先读一读。你知道了什么?
生汇报:已知条件和问题。
引导学生明确题意:边长为1分米的小正方形,一共有16个,用它们去拼长方形和正方形。拼出不同形状的图形是要解决周长最短的问题。
渗透读题习惯:拿到题目,梳理条件,明确问题,这是个很好的习惯!
思考:怎样解决这个问题?
2、动手操作
(1)学生利用教师提供的学具,通过动手操作想办法解决问题。
汇报预设:无序,不完整
有序,完整
(2)对比思考:明确有序思考的重要性——不重复不遗漏。
(3)回顾反思:所有的情况都找完了吗?
3、计算周长:
通过大家的思考、验证,我们确定16个小正方形拼长方形和正方形,只能拼出这3种。在你的格子纸中算一算这3种情况的周长分别是多少?刚才没有找全的同学,把自己没考虑到的先补充再计算。
4、解决问题:通过比较,正方形的周长最短。
5、追本溯源:同样都是用16个小正方形,只是拼成的形状不同,周长为什么发生变化呢?
生大胆猜测:拼组后隐藏在图形内部的小正方形的边长越多,其露在外面的正方形的边长越少,拼组后图形的周长就越短。
课件演示辅助理解:
师:看了它们的变形过程,你又有什么新的发现吗?
引导感悟:长变得越来越短,宽变得越来越长,周长变得越来越短。长和宽变得越来越接,周长越短。当长和宽相等时,变成了正方形,周长最短。
5、小结: 虽然小正方形的数量相同,随着拼组形状的改变,它们的“内心”也发生了翻天覆地的变化,藏起来不参与周长计算的边多了,露在外面参与周长计算的边就少了;如果藏起来的边少了,那露在外面的边就会变多,周长就更长。是内在的“变”引发了外在的周长的变化!透过现象看本质,你们可真了不起!
6、应用规律,提升几何直观。
如果用36个小正方形去拼呢?怎样拼,周长最短?
生口答:拼成边长是6分米的正方形周长最短。
(二)拓展提升,内化策略经验
1、如果去掉4个小正方形,现在只有12个小正方形呢?怎样摆周长最短?
引导思考:和前面研究的题目不一样了, 12个小正方形不能拼成正方形。这时怎样拼周长最短呢?
预设:学生运用前面的探究方法,结合操作经验有序说出所有拼法:12=1×12,2×6,3×4,通过计算找出周长最短的拼法。
直接运用前面的拼摆经验和发现的规律发现:长和宽最接近,周长最短。
2、观察结果,你有什么想说的吗?
12个小正方形,摆不成正方形了,但我们依然能够找到周长最短的那种情况。什么情况下周长最短?(长和宽越接近,周长越短)
师:接近是什么意思?(长和宽的差)那越接近就是长和宽的差越小。
(三)联系两次发现,内化规律
师:今天我们研究的是“怎样拼周长最短”。谁来说说怎样拼周长才能最短?
生:当能拼成正方形时,正方形的周长最短,当拼不成正方形时,长和宽越接近,周长越短。
三、运用提升
师:这些知识仅仅只躺在我们的数学课本上吗?在生活中,有我们今天研究的影子吗?
如:学校布置绘画园地,要把18幅绘画作品贴在一起,并在“绘画园地”的四周贴上装饰花边,且要使贴的花边最少,节纸材料,节省成本的同时又能有好的效果,一举两得!
四、联系生活
在你的身边,这些知识还能帮助我们做什么呢?请同学们做个有心人,留心生活中的数学!

课后反思

这节课,通过自主探究解决问题的活动,旨在进一步发展数学思考,提高学生问题解决的能力。对刚进入三年级才几个月的孩子来讲,他的空间观念刚从直观认知过渡到特征认知,解决问题的能力比较稚嫩。所以学生能力的培养不能一蹴而就,需要借助几何直观循序渐进地引导。
一、重视习惯养成,提高阅读能力,搭建有效思考平台。
学生在解决问题时,常出现自己做时没思路的题目,经老师或家长一读题,就立刻恍然大悟的情形,可见读题能力对数学学科也是非常重要的,常常会成为学生有效思维的拦路虎。课堂上教师引导学生梳理条件,明确问题,渗透读题习惯。当学生明确用16个小正方形去拼长方形和正方形,拼出的图形形状不同,周长可能也会不同,正确理解需要解决的问题后,再去思考“怎样拼周长最短?”,这时学生进行的思考才可能是有效的。
二、将操作经验上升到思想感悟,引领学生深度学习。
美国著名心理学家麦克利兰于1973年提出了一个著名的“素质冰山模型”,如果把数学知识看作一个“冰山模型”的话,那么显性知识是 “冰山水面以上的部分”,只是冰山一角,在整个数学学习过程中起决定性作用的是“冰山水面以下的部分”———隐性知识。思想的感悟和经验的积累是一种隐性的东西,但恰恰就是这些隐性的东西在很大程度上影响着人的思想方法。因此,教师在课堂教学中,不仅要让学生理解和把握显性知识,还要深入挖掘其背后的隐性知识,帮助学生积累基础活动经验,渗透数学基本思想。数学活动经验就属于隐性知识,这节课,学生通过动手操作发现:用16个小正方形拼长方形和正方形,拼成的正方形周长最短,得出结论后,并没有停下探究的脚步,通过问题引领让学生继续思考周长发生变化的根本原因,悟出“拼成正方形周长最短”的道理,挖掘结论背后的知识本质,并将这些体验迁移于后续的学习中。当继续探究“12个正方形怎样拼周长最短?”时,有的学生直接说出拼成3行,每行4个时周长最短,他大胆“猜测”的依据是什么?是一种感觉,这种感觉 就建立在对知识本质的感和悟的基础上,是活动经验的积累内化。我认为,恰恰是这种了不起的感觉,助力他展开深度学习,提升数学思维。
三、在情境中催生小学生的策略意识,逐步提高解决问题的能力。
数学情境要有儿童味儿、生活味儿,更要有数学味儿,要能够引发学生的数学思考真正发生。这节课从16个小正方形的探究开始,问题的解决需要考虑到所有可能的结果,还需要计算、比较,这就是解决问题的策略,学生在这样的情境下经历策略的形成过程,催生策略意识。再到12个小正方形的探究,学生此时会发现前面的规律不能解决问题了,又再次激发策略的心理需求,有的学生调动已经积累的解决问题的经验,有序找出所有的拼法,进而猜测并验证长和宽最接近时,周长最短。在有挑战性的情境下,学生的思维被盘活了,运用策略解决问题的潜意识逐渐清晰。