摘要:本文讨论了Transformer模型在股票市场预测中的应用,突出其自注意力机制在捕捉长期趋势和周期性变化方面的优势。文章详细介绍了模型理论、架构,并分析了其在股价预测中的优势和挑战。通过实操案例,展示了如何使用Python和PyTorch进行模型构建、训练和评估,包括数据预处理和性能评价。结果证实Transformer模型能有效预测股价,但需注意过拟合和数据量问题。未来研究将着眼于模型优化和实时数据应用,以增强预测的准确性和实用性。
文章目录
1. 引言
1.1 研究背景与意义
在金融领域,股票市场预测一直是一个极具挑战性的任务。股票价格的波动受到多种因素的影响,包括宏观经济状况、市场情绪、政策变化等,这些因素的复杂交互使得准确预测股票走势变得极为困难。随着机器学习和深度学习技术的发展,特别是Transformer模型的出现,为股票市场预测提供了新的视角和工具。
1.2 Transformer模型简介
Transformer模型最初由Vaswani等人在2017年提出,主要用于解决自然语言处理(NLP)任务。其核心机制是自注意力(Self-Attention)