多元高斯分布是非参_(二)多元高斯分布与概率图条件独立性假设

Author: Pan

Date:    2020/7/15

首先,我们通过随机向量的介绍来引出多元高斯分布,通过多元高斯分布,我们将介绍概率图的条件独立性假设。

先快速过一遍随机向量:

1.随机向量和其基本性质

假设随机向量

math?formula=%5Cvec%7BX%7D%3D(X_%7B1%7D%2CX_%7B2%7D%2C...%2CX_%7Bp%7D)%5E%7BT%7D,那么假设它有个累积分布(Cumulative Distribution Function;CDF)

math?formula=F_%7BX%7D(%5Cvec%7Bx%7D)%3DP(%5Cvec%7BX%7D%5Cleq%20%5Cvec%7Bx%7D)%3DP(X_%7B1%7D%5Cleq%20%7Bx_%7B1%7D%7D%2CX_%7B2%7D%5Cleq%20%7Bx_%7B2%7D%7D%2C...%2CX_%7Bp%7D%5Cleq%20%7Bx_%7Bp%7D%7D)

1. 1当随机向量的每个元素取值均绝对连续(Absolutely Continuous): 假设存在一个概率密度函数(Probability Density Function;PDF),则有

math?formula=F_%7BX%7D(%5Cvec%7Bx%7D)%3D%5Cint_%7B%E2%88%9E%7D%5E%7B%5Cvec%7Bx%7D%7Df_%7BX%7D(%5Cvec%7Bu%7D)d%5Cvec%7Bu%7D%20%3Bd%5Cvec%7Bu%7D%3Ddu_%7B1%7Ddu_%7B2%7Ddu_%7B3%7D...du_%7Bp%7D

math?formula=%5Cfrac%7Bd%20F_%7BX%7D(%5Cvec%7Bx%7D)%7D%7Bd%5Cvec%7Bx%7D%7D%3Df_%7BX%7D(%5Cvec%7Bu%7D)

1. 2当随机向量的每个元素取值均为离散值,构成离散分布(Discrete distributions):假设存在一个概率质量函数(Probability Mass Function;PMF),则有

math?formula=f_%7BX%7D(%5Cvec%7Bx_%7Bj%7D%7D)%3DP(%5Cvec%7BX%7D%3D%5Cvec%7Bx_%7Bj%7D%7D)

1. 3 边界分布和条件分布以及独立性:

假设

math?formula=%5Cvec%7BX%7D%3D(%5Cvec%7BX%7D_%7Bleft%7D%2C%5Cvec%7BX%7D_%7Bright%7D)

那么其边界分布可以定义为:

math?formula=F_%7BX%7D(%5Cvec%7Bx_%7Bleft%7D%7D)%3DP(%5Cvec%7BX_%7Bleft%7D%7D%5Cleq%20%5Cvec%7Bx_%7Bleft%7D%7D)%3DF_%7BX%7D(x_%7B1%7D%2Cx_%7B2%7D%2C...x_%7Bk%7D%2C%E2%88%9E%2C%E2%88%9E%2C...%2C%E2%88%9E)

math?formula=F_%7BX%7D(%5Cvec%7Bx_%7Bright%7D%7D)%3DP(%5Cvec%7BX_%7Bright%7D%7D%5Cleq%20%5Cvec%7Bx_%7Bright%7D%7D)%3DF_%7BX%7D(%E2%88%9E%2C%E2%88%9E%2C...%2C%E2%88%9E%2Cx_%7Bk%2B1%7D%2Cx_%7Bk%2B2%7D%2C...x_%7Bp%7D)

其条件分布可定义为:

math?formula=f_%7B%5Cvec%7BX_%7Bright%7D%7D%7D(%5Cvec%7Bx_%7Bright%7D%7D%7C%5Cvec%7BX_%7Bleft%7D%7D%3D%5Cvec%7Bx_%7Bleft%7D%7D)%3D%5Cfrac%7Bf(%5Cvec%7Bx_%7Bleft%7D%7D%2C%5Cvec%7Bx_%7Bright%7D%7D)%7D%7Bf_%7B%5Cvec%7BX_%7Bleft%7D%7D%7D(%5Cvec%7Bx_%7Bleft%7D%7D)%7D条件概率的性质:

math?formula=E(E(Y%7CX))%3DE(Y)

条件方差公式:

math?formula=D(Y)%3DD(E(Y%7CX))%2BE(D(Y%7CX))

math?formula=D(Y)%3DE(Y%5E%7B2%7D)-E%5E%7B2%7D(Y)%3DE((%5BY-E(Y%7CX)%5D%2BE(Y%7CX))%5E2)-E%5E%7B2%7D(Y)%5C%5C%3DE(%5BY-E(Y%7CX)%5D%5E2)%2BE(E%5E%7B2%7D(Y%7CX))%2BE(2E(Y%7CX)(Y-E(Y%7CX)))-E%5E%7B2%7D(Y)%5C%5C%3DE(%5BY-E(Y%7CX)%5D%5E2)%2BE%5E%7B2%7D(Y)-E(E%5E%7B2%7D(Y%7CX))%5C%5C%3DD(E(Y%7CX))%2BE%5E%7B2%7D(E(Y%7CX))-E(E%5E%7B2%7D(Y%7CX))%5C%5C%3DD(E(Y%7CX))%2BE(D(Y%7CX))

重要推论:

math?formula=D(Y)%5Cgeq%20D(E(Y%7CX))%0A

独立性:

math?formula=f_%7B%5Cvec%7BX_%7Bright%7D%7D%7D(%5Cvec%7BX_%7Bright%7D%7D%7C%5Cvec%7BX_%7Bleft%7D%7D)%3Df_%7B%5Cvec%7BX_%7Bright%7D%7D%7D(%5Cvec%7BX_%7Bright%7D%7D)

math?formula=%5CLeftrightarrow%20

math?formula=%5Cvec%7BX%7D_%7Bleft%7D%2C%5Cvec%7BX%7D_%7Bright%7D独立(if

math?formula=%5Cvec%7BX%7D_%7Bright%7D%5Cneq%20%5Cvec%7B0%7D)

math?formula=%5CRightarrow%20

math?formula=f(%5Cvec%7BX_%7Bright%7D%7D%2C%5Cvec%7BX_%7Bleft%7D%7D)%3Df_%7B%5Cvec%7BX_%7Bright%7D%7D%7D(%5Cvec%7BX_%7Bright%7D%7D)%5Ccdot%20f_%7B%5Cvec%7BX_%7Bleft%7D%7D%7D(%5Cvec%7BX_%7Bleft%7D%7D)

2.随机向量的协方差矩阵与相关系数矩阵

在讨论随机变量的协方差和相关系数矩阵之前,我们需要定义一个矩阵值函数,将随机变量中的性质,推广到随机向量中。在定义矩阵值函数之前,我们需要先定义一个从向量到标量的映射函数

math?formula=g(%5Cvec%7Bx%7D);

那么它的期望为:

math?formula=E(g(%5Cvec%7Bx%7D))%3D%5Cint%5E%7B%2B%E2%88%9E%7D_%7B-%E2%88%9E%7Dg(%5Cvec%7Bx%7D)dF(%5Cvec%7Bx%7D)

只要积分收敛,这个期望就是有限的。

定义矩阵值函数

math?formula=G%3D%5Bg(%5Cvec%7Bx%7D)_%7Bi%2Cj%7D%5D_%7Bn%5Ctimes%20p%7D%3Bi%3D1%2C2%2C...%2Cn%3Bj%3D1%2C2...%2Cp%3B

且有:

math?formula=E(G(%5Cvec%7Bx%7D))%3D%5BE(g(%5Cvec%7Bx%7D)_%7Bi%2Cj%7D)%5D_%7Bn%5Ctimes%20p%7D

举个特殊的例子,X有p个特征:

math?formula=E(X_%7B%7D)%3D%5Cvec%7B%5Cmu%7D_%7B1%5Ctimes%20p%7D%3D(%5Cmu_%7B1%7D%2C%5Cmu_%7B2%7D%2C...%2C%5Cmu_%7Bp%7D)

其中

math?formula=g(X_%7B%5B*%2Ci%5D%7D)%3D%5Cvec%7B%5Cmu_%7Bi%7D%7D%3D%5Cint%5E%7B%2B%E2%88%9E%7D_%7B-%E2%88%9E%7Dx_%7Bi%7Df_%7Bi%7D(x_%7Bi%7D)dx_%7Bi%7D

2.1 随机向量的协方差矩阵

math?formula=E((X-%5Cvec%7B%5Cmu%7D)%5E%7BT%7D(X-%5Cvec%7B%5Cmu%7D))%3D%5Csum%3D%5B%5Csigma%20_%7Bi%2Cj%7D%5D_%7Bp%5Ctimes%20p%7D%3DV(X)%3DE(X%5E%7BT%7DX)-%5Cvec%7B%5Cmu%7D%5E%7BT%7D%5Cvec%7B%5Cmu%7D

有一点值得注意:

math?formula=V(%5Cvec%7Ba%7DX)%3D%5Cvec%7Ba%7D%5E%7BT%7DV(X)%5Cvec%7Ba%7D%3D%5Cvec%7Ba%7D%5E%7BT%7D%5Csum%5Cvec%7Ba%7D%3D%5Csum%5E%7Bp%7D_%7Bi%2Cj%3D1%7Da_%7Bi%7D%5Ccdot%20a_%7Bj%7D%5Ccdot%20%5Csigma_%7Bi%2Cj%7D%5Cgeq%200

说明V(X)是对称半正定矩阵

2.2 随机向量的相关系数矩阵

math?formula=%5CDelta%20%3Ddiag(%5Csigma_%7Bi%2Ci%7D)

math?formula=%5Crho%3D%5CDelta%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5Csum%5CDelta%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D

3. 样本的协方差矩阵

前面都是快速过,这里有比较好玩的东西。

首先有个样本集:

math?formula=T%3D%5Cleft%5C%7B%20%5Cvec%7Bx_%7B1%7D%7D%2C%5Cvec%7Bx_%7B2%7D%7D%2C...%2C%5Cvec%7Bx_%7BN%7D%7D%5Cright%5C%7D%3B%5Cvec%7Bx_%7Bi%7D%7D%3D(x%5E%7B(1)%7D%2Cx%5E%7B(2)%7D%2C...x%5E%7B(p)%7D)%20

样本集的协方差:

math?formula=S%3D%5Cfrac%7B1%7D%7BN-1%7D%5Csum%5E%7BN%7D_%7Bi%3D1%7D(%5Cvec%7Bx_%7Bi%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%20)%5E%7BT%7D(%5Cvec%7Bx_%7Bi%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%20)

展开:

math?formula=S%3D%5Cfrac%7B1%7D%7BN-1%7D(%5Cvec%7Bx_%7B1%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%2C%5Cvec%7Bx_%7B2%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%20%2C...%2C%5Cvec%7Bx_%7BN%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%20)%5E%7BT%7D(%5Cvec%7Bx_%7B1%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%2C%5Cvec%7Bx_%7B2%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%20%2C...%2C%5Cvec%7Bx_%7BN%7D%7D-%5Cvec%7B%5Cbar%7Bx%7D%7D%20)

math?formula=%5Cvec%7B1%7D.shape%3D1%20%5Ctimes%20N

继续:

math?formula=S%3D%5Cfrac%7B1%7D%7BN-1%7D((%5Cvec%7Bx_%7B1%7D%7D%2C%5Cvec%7Bx_%7B2%7D%7D%2C...%2C%5Cvec%7Bx_%7Bn%7D%7D)-%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B%5Cbar%7Bx%7D%7D)%5E%7BT%7D((%5Cvec%7Bx_%7B1%7D%7D%2C%5Cvec%7Bx_%7B2%7D%7D%2C...%2C%5Cvec%7Bx_%7Bn%7D%7D)-%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B%5Cbar%7Bx%7D%7D)

因为

math?formula=%5Cvec%7B%5Cbar%7Bx%7D%7D%3D%5Cfrac%7B1%7D%7BN%7D%5Csum%5E%7BN%7D_%7Bi%3D1%7D%5Cvec%7Bx_%7Bi%7D%7D%3D%5Cfrac%7B1%7D%7BN%7D%5Ccdot%20%5Cvec%7B1%7D%20%5Ccdot%20X;

将上式代入原式中,可得:

math?formula=S%3D%5Cfrac%7B1%7D%7BN-1%7D(X-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20X)%5E%7BT%7D(X-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20X)

math?formula=S%3D%5Cfrac%7B1%7D%7BN-1%7DX%5E%7BT%7D(I_%7Bn%7D-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20I_%7Bn%7D)%5E%7BT%7D(I_%7Bn%7D-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20I_%7Bn%7D)X

math?formula=(I_%7Bn%7D-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20I_%7Bn%7D)实际上是中心矩阵,它实际上把数据X的均值归到0,

math?formula=(I_%7Bn%7D-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20I_%7Bn%7D)%5Ccdot%20%5Cvec%7B1%7D%3D%5Cvec%7B0%7D%5Ccdot%20%5Cvec%7B1%7D,说明0是它的一个特征值,不满秩,是个奇异矩阵。

math?formula=S%3D%5Cfrac%7B1%7D%7BN-1%7DX%5E%7BT%7D(I_%7Bn%7D-%5Cfrac%7B1%7D%7BN%7D%5Cvec%7B1%7D%5E%7BT%7D%5Ccdot%20%5Cvec%7B1%7D%5Ccdot%20I_%7Bn%7D)X 可用来直接算样本协方差。

4. 多元高斯分布

假设m维随机向量

math?formula=%5Cvec%7BX%7D%3D(X_%7B1%7D%2CX_%7B2%7D%2C...%2CX_%7Bm%7D)

m维向量

math?formula=%5Cvec%7B%5Cmu%7D%3D(%5Cmu_%7B1%7D%2C%5Cmu_%7B2%7D%2C...%2C%5Cmu_%7Bm%7D);

半正定的协方差矩阵

math?formula=%20%5CSigma%20_%7Bp%5Ctimes%20p%7D;

PDF:

math?formula=N_%7Bm%7D(%5Cvec%7Bx%7D%7C%5Cvec%7B%5Cmu%7D%3B%20%5CSigma)%3D%5Cfrac%7B1%7D%7B(2%5Cpi)%5E%7B-%5Cfrac%7Bm%7D%7B2%7D%7D%5Cvert%20%20%5CSigma%20%5Cvert%7De%5E%7B-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20(%5Cvec%7Bx%7D-%5Cvec%7B%5Cmu%7D)%5E%7BT%7D%20%5CSigma%5E%7B-1%7D(%5Cvec%7Bx%7D-%5Cvec%7B%5Cmu%7D)%7D

不加以证明的给出两个定理,这个是为了证明第三个定理做铺垫,第三个定理是为了讲解概率图的条件独立性假设做铺垫:定理1:如果

math?formula=X%5Ctilde%7B%7DN(%5Cvec%7B%5Cmu%7D%3B%20%5CSigma)%20,B是个

math?formula=k%5Ctimes%20m的矩阵,

math?formula=%5Cvec%7Bb%7D是个

math?formula=k%5Ctimes%201的向量,

math?formula=B%20%5CSigma%20B%5E%7BT%7D是个非奇异的矩阵。那么,对于

math?formula=Y%3DBX%2B%5Cvec%7Bb%7D; 有

math?formula=Y%5Ctilde%7B%7DN(B%5Cvec%7B%5Cmu%7D%2B%5Cvec%7Bb%7D%3BB%20%5CSigma%20B%5E%7BT%7D)%20

多元高斯分布是一个建模能力很强的分布,因为很多情况下,数据在做归一化后,很多都可以依分布收敛于高斯分布。由于

math?formula=%20%5CSigma为实对称矩阵,可正交对角化,即总有

math?formula=%20%5CSigma%3DU%5E%7BT%7D%5CLambda%20U;其中正交阵:

math?formula=U%5E%7BT%7DU%3DI;令

math?formula=B%3D%20%5CSigma%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%3DU%5E%7BT%7D%5CLambda%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%20U,所以可以得出:

math?formula=%20%5CSigma%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D(X-%5Cvec%7B%5Cmu%7D)%5Ctilde%7B%7DN(0%2CI)%20定理2:当

math?formula=X%5Ctilde%7B%7D%20N_%7Bm%7D(%5Cvec%7B%5Cmu%7D%3B%20%5CSigma)%20,当且仅当

math?formula=A%5CSigma%20B%5E%7BT%7D%3D0,

math?formula=AX

math?formula=BX相互独立;

定理2的证明:

1.根据定理1,

math?formula=AX%5Ctilde%7B%7DN(A%5Cvec%7B%5Cmu%7D%3BA%20%5CSigma%20A%5E%7BT%7D)%20;

math?formula=BX%5Ctilde%7B%7DN(B%5Cvec%7B%5Cmu%7D%3BB%20%5CSigma%20B%5E%7BT%7D)%20;对于高斯分布来说,

独立性与不相关等价,所以要证明AX与BX独立,可以证明两者不相关;即:

math?formula=D(AX%2BBX)%3DD(AX)%2BD(BX)

证明如下:

math?formula=D(AX%2BBX)%3DD((A%2BB)X)%3D(A%2BB)%20%5CSigma%20(A%2BB)%5E%7BT%7D%3DA%20%5CSigma%20A%5E%7BT%7D%2BB%20%5CSigma%20B%5E%7BT%7D%2BA%20%5CSigma%20B%5E%7BT%7D%2BB%20%5CSigma%20A%5E%7BT%7D

因为:

math?formula=D(AX)%3DA%20%5CSigma%20A%5E%7BT%7D%3BD(BX)%3DB%20%5CSigma%20B%5E%7BT%7D;

所以

math?formula=D(AX%2BBX)%3DD(AX)%2BD(BX)%2BA%20%5CSigma%20B%5E%7BT%7D%2B(A%20%5CSigma%20B%5E%7BT%7D)%5E%7BT%7D

math?formula=A%20%5CSigma%20B%5E%7BT%7D%3D0时:

math?formula=D(AX%2BBX)%3DD(AX)%2BD(BX)成立,所以AX与BX不相关,因此,AX与BX独立。定理3:定义

math?formula=X%3D%5B%5Cvec%7BX1%7D%2C%5Cvec%7BX2%7D%5D%5E%7BT%7D%3BX_%7B1%7D%E6%98%AFp%E7%BB%B4%E5%90%91%E9%87%8F%3BX_%7B2%7D%E6%98%AFq%E7%BB%B4%E5%90%91%E9%87%8F%3Bm%3Dp%2Bq%3B

math?formula=%20%5CSigma表示为分块矩阵:

math?formula=%20%5CSigma%3D%7B%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%5Cend%7Barray%7D%20%5Cright)%20%7D%7D%5C

如果

math?formula=X%5Ctilde%7B%7D%20N_%7Bm%7D(%5Cvec%7B%5Cmu%7D%3B%20%5CSigma)%20

math?formula=%20%5CSigma%20%3E0;

那么:

math?formula=%5Cvec%7BX_%7B1%7D%7D%E5%92%8C%5Cvec%7BX_%7B2-1%7D%7D%E7%BB%9F%E8%AE%A1%E7%8B%AC%E7%AB%8B%3B%E5%85%B6%E4%B8%AD%2C%5Cvec%7BX%7D_%7B2-1%7D%3D%5Cvec%7BX_%7B2%7D%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%5Cvec%7BX_%7B1%7D%7D

且:

math?formula=%5Cvec%7BX_%7B1%7D%7D%5Ctilde%7B%7D%20N_%7Bp%7D(%5Cvec%7B%5Cmu_%7B1%7D%7D%3B%20%5CSigma_%7B11%7D)%20%3B%20%5Cvec%7BX_%7B2-1%7D%7D%5Ctilde%7B%7D%20N_%7Bq%7D(%5Cvec%7B%5Cmu_%7B2-1%7D%7D%3B%20%5CSigma_%7B22-1%7D)%20;

其中:

math?formula=%5Cvec%7B%5Cmu_%7B2-1%7D%7D%3D%5Cvec%7B%5Cmu_%7B2%7D%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%5Cvec%7B%5Cmu_%7B1%7D%7D%3B

math?formula=%20%5CSigma_%7B22-1%7D%3D%20%5CSigma_%7B22%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%20%5CSigma_%7B12%7D%3B

证明:

根据定理一,我们试图找到某个系数矩阵,将X分别映射为

math?formula=%5Cvec%7BX_%7B1%7D%7D%E5%92%8C%5Cvec%7BX_%7B2-1%7D%7D;通过这样,我们便能确定他们的分布以求得他们的均值和方差。

对于

math?formula=%5Cvec%7BX_%7B1%7D%7D,很明显,

math?formula=%5Cvec%7BX_%7B1%7D%7D%3D%5BI_%7Bp%7D%2C0%5D%5Ccdot%20%5B%5Cvec%7BX1%7D%2C%5Cvec%7BX2%7D%5D%5E%7BT%7D%3DB_%7B1%7DX

math?formula=%5Cvec%7BX%7D_%7B2-1%7D%3D%5B-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%2CI_%7Bq%7D%5D%5Ccdot%20%5B%5Cvec%7BX1%7D%2C%5Cvec%7BX2%7D%5D%5E%7BT%7D%3DB_%7B2%7DX;

那么

math?formula=%5Cvec%7BX_%7B1%7D%7D的方差为:

math?formula=%7BB%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B1%7D%7D%20%5CSigma%20B%5Cmathop%7B%7B%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B1%7D%7D%7D%7D%5Cnolimits%5E%7B%7BT%7D%7D%3D%7B%20%5Cleft%5B%20%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7BP%7D%7D%2C0%7D%20%5Cright%5D%20%7D%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7B%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7BP%7D%7D%7D%5C%5C%0A%7B0%7D%0A%5Cend%7Barray%7D%20%5Cright%5D%20%7D%3D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%7D

math?formula=%7B%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7BB%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B2%7D%7D%20%5CSigma%20B%5Cmathop%7B%7B%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B2%7D%7D%7D%7D%5Cnolimits%5E%7B%7BT%7D%7D%3D%7B%20%5Cleft%5B%20%7B-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%2CI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7Bq%7D%7D%7D%20%5Cright%5D%20%7D%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7B%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%7D%5C%5C%0A%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7Bq%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright%5D%20%7D%7D%5C%5C%0A%7B%3D%20%5Cleft%5B%20-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%20%5Cleft%5D%20%7B%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%7D%5C%5C%0A%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7Bq%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright%5D%20%7D%5Cright.%20%5Cright.%20%7D%5C%5C%0A%7B%3D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%3D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22-1%7D%7D%7D%0A%5Cend%7Barray%7D%7D%5C

证明

math?formula=%5Cvec%7BX_%7B1%7D%7D%E5%92%8C%5Cvec%7BX_%7B2-1%7D%7D的独立性,

根据定理2,且

math?formula=%5CSigma是个实对称矩阵,

可得

math?formula=%7B%7BB%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B2%7D%7D%20%5CSigma%20B%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B2%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7BT%7D%7D%3D%7B%20%5Cleft%5B%20%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7BP%7D%7D%2C0%7D%20%5Cright%5D%20%7D%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7B%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%7D%5C%5C%0A%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7Bq%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright%5D%20%7D%3D-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%7D%3D0;

所以证明得

math?formula=%5Cvec%7BX_%7B1%7D%7D%E5%92%8C%5Cvec%7BX_%7B2-1%7D%7D%E7%BB%9F%E8%AE%A1%E7%8B%AC%E7%AB%8B

定理3证毕。

既然有了定理3,我们就可以讨论条件分布

math?formula=%5Cvec%7BX_%7B2%7D%7D%7C%5Cvec%7BX_%7B1%7D%7D

该条件分布依然是高斯分布,我们计算其期望和方差:

由于

math?formula=%5Cvec%7BX_%7B2%7D%7D%3D%5Cvec%7BX%7D_%7B2-1%7D%2B%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%5Cvec%7BX_%7B1%7D%7D

所以,在

math?formula=%5Cvec%7BX_%7B1%7D%7D给定的情况下,

math?formula=%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%5Cvec%7BX_%7B1%7D%7D是个常0数,所以期望只要算

math?formula=%5Cvec%7BX%7D_%7B2-1%7D的期望就行。

所以整个

math?formula=E(%5Cvec%7BX_%7B2%7D%7D%7C%5Cvec%7BX_%7B1%7D%7D)%3D%5Cvec%7B%5Cmu_%7B2%7D%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%5Cvec%7B%5Cmu_%7B1%7D%7D%2B%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%5Cvec%7BX_%7B1%7D%7D%3D%5Cvec%7B%5Cmu_%7B2%7D%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D(%5Cvec%7BX_%7B1%7D%7D-%20%5Cvec%7B%5Cmu_%7B1%7D%7D)%3B

math?formula=D(%5Cvec%7BX_%7B2%7D%7D%7C%5Cvec%7BX_%7B1%7D%7D)%3D%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22-1%7D%7D

所以

math?formula=%5Cvec%7BX_%7B2%7D%7D%7C%5Cvec%7BX_%7B1%7D%7D%5Ctilde%7B%7D%20N_%7Bq%7D(%5Cvec%7B%5Cmu_%7B2%7D%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D(%5Cvec%7BX_%7B1%7D%7D-%20%5Cvec%7B%5Cmu_%7B1%7D%7D)%3B%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22-1%7D%7D)

其实证了这么多是要说明一个什么问题呢?

那就是

math?formula=P(%5Cvec%7BX_%7B2%7D%7D%7C%5Cvec%7BX_%7B1%7D%7D)%5Cneq%20P(%5Cvec%7BX_%7B2%7D%7D)

原因是他们的期望和方差都不一样,所以

math?formula=%5Cvec%7BX_%7B2%7D%7D%E5%92%8C%5Cvec%7BX_%7B1%7D%7D之间并不独立。

但是

math?formula=%5Cvec%7BX_%7B1%7D%7D%2C%5Cvec%7BX_%7B2-1%7D%7D之间却是相互独立的。说明

math?formula=(%5Cvec%7BX_%7B1%7D%7D%2C%5Cvec%7BX_%7B2-1%7D%7D)

math?formula=(%5Cvec%7BX_%7B1%7D%7D%2C%5Cvec%7BX_%7B2%7D%7D)更能完整表达X的整体信息。更为重要的是:math?formula=%7B%7B%7B%7B%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7BP%7D%7D%7D%7D%26%7B0%7D%5C%5C%0A%7B-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%7D%26%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7Bq%7D%7D%7D%0A%5Cend%7Barray%7D%7D%20%5Cright%5D%20%7D%7D%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7B%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7BP%7D%7D%7D%7D%26%7B-%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%5Cmathop%7B%7B%7D%7D%5Cnolimits%5E%7B%7B-1%7D%7D%7D%5C%5C%0A%7B0%7D%26%7BI%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7Bq%7D%7D%7D%0A%5Cend%7Barray%7D%7D%20%5Cright%5D%20%7D%3D%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%7D%26%7B0%7D%5C%5C%0A%7B0%7D%26%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22-1%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7D%7D

math?formula=%7B%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7D%5C矩阵相似于

math?formula=%7B%20%7B%7B%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%0A%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%7D%26%7B0%7D%5C%5C%0A%7B0%7D%26%7B%20%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22-1%7D%7D%7D%0A%5Cend%7Barray%7D%20%5Cright)%20%7D%7D%7D。这将在之后的概率图中有重要作用。

5.概率图的条件独立性

高斯无向图的条件独立性假设与计算

假设

math?formula=X%3D%5BX_%7B1%7D%2CX_%7B2%7D%2C...%2CX_%7Bm%7D%5D%5Ctilde%7B%7DN_%7Bm%7D(0%2C%20%5CSigma)%20;

其中X中的每个元素代表图中的每一个点,两个点之间是否有关系(有连接)取决于两个点之间是否独立,独立就是没关系,否则有关系:

所以我们这么定义:

全局关系:

全局关系指的是任意拿出两点

math?formula=X_%7Bi%7D%2CX_%7Bj%7D,检验他们是否独立。

局部关系:

局部关系指的是在其他已知点(除了

math?formula=X_%7Bi%7D%2CX_%7Bj%7D两点的其他点)的情况下,检验

math?formula=X_%7Bi%7D%2CX_%7Bj%7D是否独立。

对于全局关系,要判断上述两点独立,当且仅当

math?formula=%5Csigma_%7Bi%2Cj%7D%3D0

对于局部关系,要判断上述两点条件独立,要看

math?formula=%5CSigma%5E%7B-1%7D中的元素,即:

math?formula=%5Ctheta_%7Bi%2Cj%7D%3D0

同样我们将

math?formula=%5CSigma%5E%7B-1%7D也进行分块化的处理:

即:

math?formula=%20%5CSigma%5E%7B-1%7D%3D%7B%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%7B%20%5CTheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5CTheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%7B%20%5CTheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5CTheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%5Cend%7Barray%7D%20%5Cright)%20%7D%7D%5C

现将X划分成两部分

math?formula=X%3D%5B%5BX_%7B1%7D%2CX_%7B2%7D%5D%2C%5Cvec%7BX%7D_%7Brest%7D%5D

所以由

math?formula=%5Cvec%7BX_%7B2%7D%7D%7C%5Cvec%7BX_%7B1%7D%7D%5Ctilde%7B%7D%20N_%7Bq%7D(%5Cvec%7B%5Cmu_%7B2%7D%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D(%5Cvec%7BX_%7B1%7D%7D-%20%5Cvec%7B%5Cmu_%7B1%7D%7D)%3B%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22-1%7D%7D)

math?formula=%5BX_%7B1%7D%2CX_%7B2%7D%5D%7C%5Cvec%7BX%7D_%7Brest%7D%5Ctilde%7B%7D%20N_%7Bq%7D(%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%5Cvec%7BX%7D_%7Brest%7D%3B%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11-2%7D%7D)

因为定理3中给出的是

math?formula=%20%5CSigma_%7B22-1%7D%3D%20%5CSigma_%7B22%7D-%20%5CSigma%20_%7B21%7D%20%5CSigma%5E%7B-1%7D_%7B11%7D%20%5CSigma_%7B12%7D%3B

对应的

math?formula=%20%5CSigma_%7B11-2%7D%3D%20%5CSigma_%7B11%7D-%20%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%20%5CSigma_%7B21%7D%3B

math?formula=%20%5CSigma%5E%7B-1%7D%20%5CSigma%3DI可以得出:

(1).

math?formula=%5CSigma_%7B11%7D%5CTheta_%7B11%7D%2B%5CSigma_%7B12%7D%5CTheta_%7B21%7D%3DI

(2).

math?formula=%5CSigma_%7B21%7D%5CTheta_%7B11%7D%2B%5CSigma_%7B22%7D%5CTheta_%7B21%7D%3D%5Cvec%7B0%7D

(3).

math?formula=%5CSigma_%7B11%7D%5CTheta_%7B12%7D%2B%5CSigma_%7B12%7D%5CTheta_%7B22%7D%3D%5Cvec%7B0%7D

(4).

math?formula=%5CSigma_%7B21%7D%5CTheta_%7B12%7D%2B%5CSigma_%7B22%7D%5CTheta_%7B22%7D%3DI

由(2)(3)可得:

math?formula=%5CSigma_%7B22%7D%5E%7B-1%7D%5CSigma_%7B21%7D%3D-%5CTheta_%7B21%7D%5CTheta_%7B11%7D%5E%7B-1%7D;

math?formula=%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma_%7B12%7D%3D-%5CTheta_%7B12%7D%5CTheta_%7B22%7D%5E%7B-1%7D;

math?formula=%20%5CSigma_%7B11-2%7D%3D%20%5CSigma_%7B11%7D-%20%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%20%5CSigma_%7B21%7D%3D%5CSigma_%7B11%7D(%20%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma_%7B11%7D-%20%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%20%5CSigma_%7B21%7D)%3B

将(1)中两边同左乘一个

math?formula=%5CSigma_%7B11%7D%5E%7B-1%7D得:

math?formula=%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma_%7B11%7D%5CTheta_%7B11%7D%2B%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma_%7B12%7D%5CTheta_%7B21%7D%3D%5CSigma_%7B11%7D%5E%7B-1%7D;

带入后得

math?formula=%5CTheta_%7B11%7D-%5CTheta_%7B12%7D%5CTheta_%7B22%7D%5E%7B-1%7D%5CTheta_%7B21%7D%3D%5CSigma_%7B11%7D%5E%7B-1%7D;

所以

math?formula=%20%5CSigma_%7B11-2%7D%3D%5CSigma_%7B11%7D(%20%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma_%7B11%7D-%20%5CSigma_%7B11%7D%5E%7B-1%7D%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%20%5CSigma_%7B21%7D)%3D%5CSigma_%7B11%7D(%20I-%5CTheta_%7B12%7D%5CTheta_%7B22%7D%5E%7B-1%7D%20%5CTheta_%7B21%7D%5CTheta_%7B11%7D%5E%7B-1%7D)%3D%5CSigma_%7B11%7D(%20%5CTheta_%7B11%7D%5CTheta_%7B11%7D%5E%7B-1%7D-%5CTheta_%7B12%7D%5CTheta_%7B22%7D%5E%7B-1%7D%20%5CTheta_%7B21%7D%5CTheta_%7B11%7D%5E%7B-1%7D)

所以结合上述二式有

math?formula=%20%5CSigma_%7B11-2%7D%3D%5CTheta_%7B11%7D%5E%7B-1%7D

因为

math?formula=%5CTheta_%7B11%7D是一个

math?formula=2%5Ctimes%202的矩阵(这里都是数值矩阵,没有分块)

math?formula=%5CTheta_%7B11%7D%3D%7B%7B%20%5Cleft(%20%5Cbegin%7Barray%7D%7B*%7B20%7D%7Bl%7D%7D%7B%20%5Ctheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11%7D%7D%2C%20%5Ctheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B12%7D%7D%7D%5C%5C%7B%20%5Ctheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B21%7D%7D%2C%20%5Ctheta%20%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B22%7D%7D%7D%5Cend%7Barray%7D%20%5Cright)%20%7D%7D%5C求逆即可。

要判定局部情况只需判定

math?formula=%5Ctheta_%7B12%7D%2C%5Ctheta_%7B21%7D均为0即可。

因此问题

math?formula=%5BX_%7B1%7D%2CX_%7B2%7D%5D%7C%5Cvec%7BX%7D_%7Brest%7D%5Ctilde%7B%7D%20N_%7Bq%7D(%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%5Cvec%7BX%7D_%7Brest%7D%3B%5CSigma%20%5Cmathop%7B%7B%7D%7D%5Cnolimits_%7B%7B11-2%7D%7D)

转化为

math?formula=%5BX_%7B1%7D%2CX_%7B2%7D%5D%7C%5Cvec%7BX%7D_%7Brest%7D%5Ctilde%7B%7D%20N_%7Bq%7D(%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%5Cvec%7BX%7D_%7Brest%7D%3B%5CTheta_%7B11%7D%5E%7B-1%7D)

鉴于均值中

math?formula=%5CSigma%5E%7B-1%7D_%7B22%7D的计算量特别大,又

math?formula=%5CSigma%20_%7B12%7D%20%5CSigma%5E%7B-1%7D_%7B22%7D%3D-%5CTheta_%7B11%7D%5E%7B-1%7D%5CTheta_%7B12%7D;

将均值改为:

math?formula=-%5CTheta_%7B11%7D%5E%7B-1%7D%5CTheta_%7B12%7D%5Cvec%7BX%7D_%7Brest%7D

这样就大大简化了计算量。

这其实意味着,均值其实表现为其他数据的线性组合。当概率图中有点和当前点独立时,

math?formula=%5CTheta_%7B12%7D中就有许多与其独立的点对应的值为0,我们的目的其实就是去学这样的

math?formula=%5CTheta参数来完成预测。基于此,以后会谈到流形学习和具体的概率图的模型,策略以及算法。

PS:高斯的协方差逆矩阵真的是神来之笔~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值