点击上方蓝色文字关注我们吧~


Geogebra
同步课件系列(12)
courseware
等边三角形内任意一点到三边的距离之和为定值。(等于其高)
01-
课题说明

等边三角形内任意一点到三边的距离之和为定值。(等于其高)。这条等边三角形的性质课本里面是没有,但经过查询,这个定理是喜欢考的一个考点,让学生证明这条定理。这条定理证明还是比较简单,用面积去证就可以了。这个课件主要用动图来证明这个定理。
02-
课件制作

制作等边三角形,及3条垂线段。
A=交点(x轴, y轴)
B=描点(x轴)
poly1=多边形(A, B, 3)
O=内点(poly1)
i=线段(O, D)
j=线段(O, E)
k=线段(O, F)
α=角度(O, F, C)
β=角度(O, E, B)
γ=角度(O, D, A)
完成后让上图设置。最后效果如上图

创建控制线段平移旋转的滑动条a,方法如上图。将这个滑动条分解成7个滑动条。
l1=序列(如果(a < i, 0, i ≤ a < i + 1, a - i, 1), i, 0, 6)
注:这条指令相当于写了6个关于a的分段函数。
当i=0时,如果(a < 0, 0, 0 ≤ a < 0 + 1, a - 0, 1)
当i=1时,如果(a < 1, 0, 1 ≤ a < 1 + 1, a - 1, 1)
当i=2时,如果(a < 2, 0, 2 ≤ a < 2 + 1, a - 2, 1)
后面三个我不写,如果不明白自己把i带入就能得到后面三个分段函数了。
制作等边三角形高的边界
G=(x(B) + 2, y(C))
H=(x(B) + 2, y(B))
l=线段(C, 描点(线段(C, G), l1(1)))
m=线段(B, 描点(线段(B, H), l1(2)))

让三条垂线段旋转和平移起来
n=平移(线段(旋转(O, -(120°) l1(3), O), 旋转(E, -(120°) l1(3), O)), l1(4) (G - O))
p=平移(线段(旋转(O, 120° l1(5), O), 旋转(F, 120° l1(5), O)), l1(6) (G + (0, -j) - O))
i'=平移(i, l1(7) (H - D))
对点,线段的颜色,显示灯进行一下设置,设置完毕后如上图。
03-
效果展示

到此课件制作完成,看看效果吧。
04-
课件下载

点击文件尾部“喜欢作者”,支付任意赞赏金后会自动收到课件下载网址。
THEEND

扫码关注我
点个“在看”表示朕
已阅