三角形一点到三边距离最小_Geogebra 制作同步课件(12)等边三角形内任意一点到三边的距离之和为定值...

本文介绍了如何使用Geogebra制作一个动态课件,证明等边三角形内任意一点到三边的距离之和为定值,等于三角形的高。通过创建滑动条和分段函数模拟点的移动,展示该性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方蓝色文字关注我们吧~

3e071c2251462530abde12fbb4c85ade.gif cf28cb5f7250da80059bacaf4f405b83.png

Geogebra

同步课件系列(12)

courseware

等边三角形内任意一点到三边的距离之和为定值。(等于其高)

01-

课题说明

ea40a1e1c466bd23ecdb39536b663a5d.png

等边三角形内任意一点到三边的距离之和为定值。(等于其高)。这条等边三角形的性质课本里面是没有,但经过查询,这个定理是喜欢考的一个考点,让学生证明这条定理。这条定理证明还是比较简单,用面积去证就可以了。这个课件主要用动图来证明这个定理。

02-

课件制作

215b1ff40eb0f472087294a9cd3cedfd.png

制作等边三角形,及3条垂线段。

A=交点(x轴, y轴)

B=描点(x轴)

poly1=多边形(A, B, 3)

O=内点(poly1)

i=线段(O, D)

j=线段(O, E)

k=线段(O, F)

α=角度(O, F, C)

β=角度(O, E, B)

γ=角度(O, D, A)

完成后让上图设置。最后效果如上图

4117fef37b8960383370a18d9bbe7787.png

创建控制线段平移旋转的滑动条a,方法如上图。将这个滑动条分解成7个滑动条。

l1=序列(如果(a < i, 0, i ≤ a < i + 1, a - i, 1), i, 0, 6)

注:这条指令相当于写了6个关于a的分段函数。

当i=0时,如果(a < 0, 0, 0 ≤ a < 0 + 1, a - 0, 1)

当i=1时,如果(a < 1, 0, 1 ≤ a < 1 + 1, a - 1, 1)

当i=2时,如果(a < 2, 0, 2 ≤ a < 2 + 1, a - 2, 1)

后面三个我不写,如果不明白自己把i带入就能得到后面三个分段函数了。

383d78e95b14c4b4f23e5250555e9df9.png

制作等边三角形高的边界

G=(x(B) + 2, y(C))

H=(x(B) + 2, y(B))

l=线段(C, 描点(线段(C, G), l1(1)))

m=线段(B, 描点(线段(B, H), l1(2)))

d501ed8b7d25428383a23ea5d65055ec.png

让三条垂线段旋转和平移起来

n=平移(线段(旋转(O, -(120°) l1(3), O), 旋转(E, -(120°) l1(3), O)), l1(4) (G - O))

p=平移(线段(旋转(O, 120° l1(5), O), 旋转(F, 120° l1(5), O)), l1(6) (G + (0, -j) - O))

i'=平移(i, l1(7) (H - D))

对点,线段的颜色,显示灯进行一下设置,设置完毕后如上图。

03-

效果展示

74cec1d531de3a00194c5afe859c3651.gif

到此课件制作完成,看看效果吧。

04-

课件下载

2b0dd8b14858dc960f549a372ce1a16f.png

点击文件尾部“喜欢作者”,支付任意赞赏金后会自动收到课件下载网址。

63af08a75e5f6c83af15143b25a4a1a6.png

THEEND

a725f34f3e7057a72195a231ec9e6a30.png

扫码关注我

点个“在看”表示朕

已阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值