层与特征融合_【计算机系统应用】(第122期)感受野特征增强的 SSD 目标检测算法...

点击上方“ 蓝字”,关注我们吧! 3b422f3a309b1cf1e6bba82775965fba.png d71ddbc58bba2631926cddf52a5468c0.gif

目标检测是计算机视觉领域的一项重要任务, 是 生活中如实例分割[1] , 面部分析[2] , 汽车自动驾驶[3]、视 频分析[4] 等各种视觉应用的先决条件. 

近些年, 伴随着深度卷积神经网络的充分发展[5] 以及良好的数据集注释先验工作的积累[6] , 物体检测器 的性能得到了显著提高. 但是, 物体检测过程中的尺度变化仍然是所有检测器的关键挑战, 为了识别不同尺 度的物体, 早期大多数的检测器都是基于手工制作的 特征[7] , 并且利用图像金字塔. 考虑到内存和检测时间, 这些工作无论在计算还是花费上都是昂贵的. 得益于 卷积神经网络的发展, 手工设计的特征已逐渐被卷积 神经网络计算的特征所取代. 最近的检测系统[8,9] 利用 卷积神经网络 (ConvNets) 在单个输入尺度图像依次进 行运算, 获得不同尺度的特征图, 然后用最顶层特征图 来预测具有不同尺度和纵横比的候选边界框. 然而, 最 顶部的特征图具有固定的感受野, 与自然图像中的不 同尺度的物体冲突. 特别是小物体在最顶层上几乎没 有信息, 因此可能会损害物体检测性能, 尤其是小物体.

信息, 因此可能会损害物体检测性能, 尤其是小物体. 在解决多尺度问题方面, SSD 利用从下到上的特 征金字塔来适应各种尺寸的物体, 然而, SSD 算法的特 征金字塔形式未能利用深层特征图中强大的语义信息, 这对于小物体检测至关重要. 因为语义信息对于检测 视觉上困难的物体 (例如小的, 遮挡的物体) 是决定性 的, 为了克服 SSD 的缺点并使网络对对象尺度更加稳 健, 最近的工作 (例如 FPN[9] , DSSD[10] , RON[11] ) 建议将 低分辨率带有强语义信息的特征图同具有高分辨率但 带有弱语义弱信息的特征图通过自上而下的通道横向 连接. 

与 SSD 中的自下而上的方式相比, 横向连接将 语义信息一个接一个地传递到浅层, 从而增强了浅层 特征的检测能力. 与传统检测器相比, 这些网络在精度 方面有着显著的提高. 但是我们注意到这些在最顶层 特征图中使用反卷积层的方法完全丢失了小物体的精 细细节. 本文致力于提高小物体的检测性能, 缓解 SSD 算法的尺度变化问题, 同时又不失实时检测速度. 通常, 较深层中的深层特征对于分类子任务更具辨别性, 而 较浅层中的浅层特征则对于物体位置回归子任务更有 利. 

此外, 浅层特征更适合于具有简单外观的特征对象, 而深层特征适用于具有复杂外观的对象. 基于此, 本文 通过特征融合模块将具有语义信息的深层特征添加到 浅层特征中, 以获得具有丰富信息的特征图, 将来自不 同层次的不同尺度的特征图投影并连接在一起, 然后 用 BN[12] 层进行归一化处理, 最后附加下采样层以生 成新的特征金字塔, 此外, 添加了感受野模块 (RFM), 以加强从轻量级 CNN 模型中学到的深层特征, 使它们 有助于检测器快速准确. 与传统 SSD 相比, 本文算法 RF_SSD 主要选择 VGG16 作为骨干网络, 而不是更深 层次的 ConvNets (例如 ResNet[13] 或 DenseNet[14] ), 原 因是深层卷积神经网络 (ConvNets) 虽然对特征提取有 利但会加大计算量同时降低检测速度, 实验表明本文 所提出的结构在精度上比 SSD 算法有所提升. 

本文的 贡献主要表现为以下几点:

(1) 提出了新颖的、轻量级的特征融合方式, 主要 是将不同层的特征图合并, 并生成特征金字塔, 降低了 重复检测一个对象的多个部分或者多个对象合并到一 个对象的检测概率, 同时小物体检测表现更好.

(2) 借鉴混合空洞卷积和 Inceptio

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值