ckpt下载 deeplabv3_煮酒论英雄:深度学习CV领域最瞩目的成果top46

原标题:煮酒论英雄:深度学习CV领域最瞩目的成果top46

来源:Smarter

作者:皮特潘

【新智元导读】本文盘点深度学习CV领域杰出的工作,从基础研究、分类骨架、语义分割、实例分割、目标检测、生成对抗、loss相关、部署加速、其他方面等筛选出最瞩目的成果。

如果06年Hinton的深度置信网络是深度学习时代的开启,12年的Alexnet在ImageNet上的独孤求败是深度学习时代的爆发,那么至今也有近15年的发展历程。

本文盘点深度学习CV领域杰出的工作,由于本人方向相关,故从基础研究、分类骨架、语义分割、实例分割、目标检测、生成对抗、loss相关、部署加速、其他方面等筛选出最瞩目的成果。

注意,本次盘点具有一定的时效性,是聚焦当下的。有些被后来者居上的工作成为了巨人的肩膀,本文不会涉及。

本文会给出核心创新点解读和论文链接。如果你是大牛的话,可以自查一下。如果你是小白的话,这是一份入门指引。每个工作本文都会有网络结构或核心思想的插图,并会进行导读式解读。水平有限,欢迎讨论!

入围标准

承上启下,继往开来。或开启一个时代,或打开一个领域,或引领一个潮流,或造就一段历史。在学术界或工业界备受追捧,落地成果遍地开花。共同构建成深度学习的大厦,并源源不断地给后人输送灵感和启迪。

入围成果

基础研究: Relu,Dropout,Adam,BN,AtrousConv,DCN系列

分类骨架: VGG,ResNet(系列),SeNet,NIN,Inception系列,MobileNet系列,ShuffleNet系列

语义分割: FCN,U-Net,PSPNet,Deeplab系列

实例分割: Mask R-CNN,PanNet

目标检测: Faster R-CNN,Yolo系列,FPN,SSD,CenterNet,CornerNet,FCOS,Cascade R-CNN,DETR

生成对抗: GAN,CGAN,DCGAN,pix2pix,CycleGAN,W-GAN

loss 相关: Focalloss,IOUloss系列,diceloss, CTCloss

部署加速: tf int8,network-slimming,KD

其他方面: CAM,Grad-CAM,Soft-NMS,CRNN,DBNet

Relu

论文标题:Deep Sparse Rectifier Neural Networks

核心解读:Relu相比Sigmoid,训练速度更快,且不存在Sigmoid的梯度消失的问题,让CNN走向更深度成为的可能。因为它大于0区间就是一个线性函数,不会存在饱和的问题。对于Relu也有一些改进,例如pRelu、leaky-Relu、Relu6等激活函数。单纯的Relu在0点是不可导的,因此底层需要特殊实现,放心,框架早已做好了。

Dropout

论文标题: Improving neural networks by preventing co-adaptation of feature detectors

核心解读:在训练时,按照一定概率随机丢弃掉一部分的连接。在测试时,不使用丢弃操作。一般的解释是,Dropout作为一种正则化手段,可以有效缓解过拟合。因为神经元的drop操作是随机的,可以减少神经元之间的依赖,提取独立且有效的特征。为了保证丢弃后该层的数值总量不变,一般会除上(1-丢弃比例p)。

多说一句,目前由于BN的存在,很少在CNN网络中看到Dropout的身影了。不过不能忽视其重要的意义,且在其他网络中(例如transformer)依然扮演者重要的角色。

BN

论文标题:Batch Normalization: Accelerating Deep Network Training b y Reducing Internal Covariate Shift

核心解读:首先Normalization被称为标准化,它通过将数据进行偏移和尺度缩放拉到一个特定的分布。BN就是在batch维度上进行数据的标准化,注意FC网络是batch维度,CNN网络由于要保证每一个channel上的所有元素同等对待,因此是在BHW维度上进行的标准化操作。其作用可以加快模型收,使得训练过程更加稳定,避免梯度爆炸或者梯度消失。

有了BN,你不必再小心翼翼调整参数,并且BN也起到一定的正则化作用,因此Dropout被替代了。上述公式中均值和方差通过滑动平均的方式在训练的过程中被保存下来,供测试时使用。当今CNN网络,BN已经成为了必不可少的标配操作。另外还有LN(layer Normalization)、IN(instance Normalization )、GN(group Normalization)的标准化操作。不过是作用在不同维度上获取的,不在赘述。

Adam

论文标题:ADAM : A METHOD FOR STOCHASTIC OPTIMIZATION

核心解读:应用非常广泛,SGD、momentum等方法的集大成者。SGD-momentum在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。而Adam把一阶动量和二阶动量都用起来—Adaptive + Momentum。

Adam算法即自适应时刻估计方法(Adaptive Moment Estimation),能计算每个参数的自适应学习率。这个方法不仅存储了AdaDelta先前平方梯度的指数衰减平均值,而且保持了先前梯度的指数衰减平均值,这一点与动量类似。

AtrousConv

论文标题:MULTI-SCALE CONTEXT AGGREGATION BY DILATED CONVOLUTIONS

核心解读:我们常说网络的感受野非常重要,没有足够的感受野训练和测试会丢失特征,预测就不准甚至错掉。AtrousConv被称为空洞卷积或膨胀卷积,广泛应用于语义分割与目标检测等任务中,在不增加参数的情况下,提高卷积的感受野。

也可以代替pooling操作增加感受野,捕获多尺度上下文信息,并且不会缩小特征图的分辨率。可以通过设置不同的扩张率实现不同感受野大小的空洞卷积。不过在实际的语义分割应用中,发现会出现网格现象。

DCN系列

论文标题:

v1: Deformable Convolutional Networks

v2: Deformable ConvNets v2: More Deformable, Better Results

核心解读:传统卷积只是在NXN的正方形区域提取特征,或称为滑动滤波。可变形卷积是卷积的位置是可变形的,为了增加网络提取目标几何信息或形状信息的能力。具体做法就是在每一个卷积采样点加上了一个偏移量,而这个偏移量是可学习的。另外空洞卷积也是可变形卷积的一种特例。

类似的还有可变形池化操作。在V2中发现可变形卷积有可能引入了无用的上下文来干扰特征提取,会降低算法的表现。为了解决该问题,在DCN v2中不仅添加每一个采样点的偏移,还添加了一个权重系数

,来区分引入的区域是否为我们感兴趣的区域。如果该区域无关重要,权重系数学习成0就可以了。在目前的目标检测等任务中,增加变形卷积都会有不同程度的涨点,可谓是涨点必备。

VGG

论文标题:Very Deep C

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
需要学习ubuntu系统上YOLOv4的同学请前往:《YOLOv4目标检测实战:原理与源码解析》 【为什么要学习这门课】 Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. 冗谈不够,放码过来! 代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。【课程内容与收获】 本课程将解析YOLOv4的实现原理和源码,具体内容包括:- YOLOv4目标检测原理- 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算- 代码阅读工具及方法- 深度学习计算的利器:BLAS和GEMM- GPU的CUDA编程方法及在darknet的应用- YOLOv4的程序流程- YOLOv4各层及关键技术的源码解析本课程将提供注释后的darknet的源码程序文件。【相关课程】 除本课程《Windows版YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括:《Windows版YOLOv4目标检测实战:训练自己的数据集》《Windows版YOLOv4-Tiny目标检测实战:训练自己的数据集》《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》《Windows版YOLOv4目标检测实战:中国交通标志识别》建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。【YOLOv4网络模型架构图】 下图由白勇老师绘制  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值