GPT-4o 生成各种风格图片的提示词prompt集合

GPT-4o的图像生成功能正在彻底改变创意表达的方式,它不仅支持生成高质量的图片,还能根据用户的需求灵活调整风格、细节和主题。通过中文指令,用户可以轻松生成各种风格的图片,包括卡通风格、写实风格、科幻风格等,满足从个人创作到商业应用的多样化需求。

如何用中文指令生成卡通风格图片?

GPT-4o对中文指令的支持非常友好,只需清晰描述你的需求,就能生成符合预期的卡通风格图片。以下是一些实用的技巧:

  1. 明确风格描述
    在指令中明确指出“卡通风格”,并进一步细化,比如“吉卜力风格”“3D卡通”“像素风卡通”等。例如:

    • “生成一个卡通风格的猫咪,背景是粉色的,带有毛茸茸的质感。”
    • “用吉卜力风格画一个小女孩站在樱花树下。”
  2. 提供细节和场景
    描述具体的细节和场景,帮助AI更好地理解你的需求。例如:

    • “生成一个卡通风格的城市夜景,建筑物上有霓虹灯,天空中有星星。”
    • “画一个卡通风格的机器人,表情开心,背景是一个科幻城市。”
  3. 调整色彩和氛围
    通过描述色彩和氛围,让图片更符合你的想象。例如:

    • “生成一个卡通风格的森林场景,阳光透过树叶洒下,整体色调温暖。”
    • “用卡通风格画一个雪景,天空中有雪花飘落,整体色调偏冷。”
  4. 尝试多图一致性
    如果需要生成一系列相关的图片,可以在指令中提到“保持风格一致”,以确保每张图片的风格和主题统一。

GPT-4o生成不同风格图片的优势

  • 高精度与多样性:支持生成从写实到抽象、从复古到未来感的多种风格图片。
  • 中文指令支持:完全支持中文描述,无需复杂的英文术语。
  • 快速迭代:通过调整指令中的关键词,可以快速优化生成结果。
  • 创意无限:无论是个人创作、商业设计,还是教育用途,GPT-4o都能提供强大的支持。

通过GPT-4o,你只需用中文描述需求,就能轻松生成高质量的卡通风格图片。无论是为社交媒体制作内容,还是为项目设计素材,它都能成为你的创意助手。快来试试吧!

微型立体场景 ——《大闹天宫》

提示词 prompt:
场景主题: Q版孙悟空大闹天宫
技法特色: 模拟“移轴摄影”(Tilt-shift),营造微缩模型般的视觉感
整体风格: 色彩鲜艳的立体卡通风(偏3D Q版),带有国风神话元素
空间布局:
前景: 孙悟空英姿飒爽地挥舞金箍棒,站在祥云上,眼神炯炯有神,表情顽皮又坚定。
中景: 天兵天将作战混乱,拿着兵器东倒西歪地从云中跌落,夸张搞笑的表情增强Q感。
背景: 金碧辉煌的南天门,玉皇大帝远处站立,头顶金光,但明显显得慌张。
天空/地面: 飘着层层云雾,天庭建筑漂浮于空中,如同积木城堡;地面不出现,强化“空战”氛围。
光影风格:
柔和的自然光,有明显焦点模糊效果(前后景虚,中景清晰),呈现典型“移轴微缩摄影”风格
色调以金、红、天蓝为主,明快而富有童话质感

在这里插入图片描述

项目地址👉https://gitcode.com/Midora/pictures

Q版3D个人头像

项目地址👉https://gitcode.com/Midora/pictures

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

旅行路线手绘图

在这里插入图片描述

日历插画

在这里插入图片描述

3D蓬松logo图

提示词prompt :
将 [ 附件主体 ] 的简单平面矢量图标转换为柔软的 3D 蓬松对象。该形状完全覆盖着毛皮,具有超逼真的头发纹理和柔和的阴影。该对象以干净的浅灰色背景为中心,并在空间中轻轻漂浮。风格超现实、有触感和现代感,唤起了舒适和趣味顽皮的感觉。Studio 照明、高分辨率渲染。

在这里插入图片描述

项目地址👉https://gitcode.com/Midora/pictures

### GPT-SOVITS 技术概述 GPT-SOVITS 是一种结合了生成预训练模型 (GPT) 和声码器 SOVITS 的技术框架,旨在提升语音合成的质量和效率。SOVITS 模型通过引入变分自编码器(VAE)来捕捉音频特征中的潜在变量分布,从而提高了音质的真实感[^2]。 ### 实现细节 #### 数据准备阶段 为了构建高质量的语音合成系统,数据准备至关重要。WebUI 工具提供了集成的功能模块,支持自动化处理流程: - **语音伴奏分离**:利用先进的信号处理算法将原始录音文件分为纯净的人声音轨和其他背景噪音部分。 - **自动训练集分割**:根据设定的标准对大量未标记的数据样本进行分类整理,形成适合机器学习使用的结构化集合- **中文 ASR 及文本标注**:提供针对汉语环境优化的文字转录服务以及人工辅助下的精细化标签编辑功能,确保每一段音频都有精确对应的书面表述。 ```bash # 使用 WebUI 工具安装命令示例 pip install webui-toolkit ``` #### 训练过程说明 在完成上述准备工作之后,可以开始着手于核心组件——即 GPT 与 SOVITS 结合体本身的学习迭代工作当中去。具体来说就是先基于大规模语料库预先调整好语言理解层面上的能力;再借助精心挑选出来的多维度频谱片段作为输入源驱动声学建模环节向前推进直至收敛稳定为止。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('gpt_model_path') model = AutoModelForCausalLM.from_pretrained('gpt_model_path') def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` 对于想要深入了解并实际操作这套系统的开发者而言,除了掌握必要的编程技能之外,还需要注重培养良好的沟通技巧,在团队协作过程中能够清晰阐述自己的思路和技术方案,这对于项目的成功实施同样重要[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想做全栈的胖胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值