集合的嵌套结果映射并分页_MP123:线性代数补习班(10):线性映射的核与像

91e88cfc0a796f8136411b6e359bc0ce.png

作为态射的线性映射

现在在线性空间范畴上讨论态射

,即线性空间之间的线性映射。回顾一下线性代数中的基本知识,有限维情况下
的矩阵表示记为
使得:

这里使用了Einstein求和约定。

的核与像定义为:

代数学中一个基本的结果是第一群同构定理(First Group Isomorphism Theorem)。在

群范畴中,令
,那么群对正规子群
做商群,满足:

现在我们在线性空间中讨论映射的核与像,仍然保有这一同构的性质,只是把群拓展为线性空间,把子群拓展为线性子空间,把商群拓展为商空间。群和线性空间的关系可以理解为

的遗忘函子。

在线性代数中花了很大篇幅讨论矩阵的秩,秩的概念在同调代数中有更加简洁的表述。由于矩阵

的秩的不同,态射
的核与像在上式中有不同的包含关系,通常我们用商空间来刻画,并将商空间定义为余像和余核:

时,作为
单的(injective)映射是 单射(injection),态射称为 单同态(monomorphism)。当
时,或者等价地
,作为
满的(surjective)映射是 满射(surjection),态射称为 满同态(epimorphism)。单满同态就是 同构(isomorphism)

极限


现在把这些概念放到范畴论中讨论。范畴

由对象集合
和态射集合
组成。把对象作为顶点,把态射作为箭头,可以方便地用有向图对范畴进行总体或者局部的描述。若范畴中的对象​
,在图​
中满足:对于图中任意顶点对象​,存在态射
​。对于图中的任意态射​
,当然也有
​和​
。如果另有对象
​也满足以上条件,并且存在唯一的态射
,使得下图交换,那么称
构成图
​的
极限(limit)

6295423d6ab9ff210ee493ab7c26ac62.png

均衡子与核

下面讨论一种特殊的极限。下图的极限

称为
均衡子(equalizer),在前面线性空间范畴的例子中,就是线性空间
的两个线性映射
的均衡子:

653b688d01f08831a8eae7829170c2aa.png

这里

​。根据定义,若有另一个
满足交换条件,则存在唯一的
使得上图交换。

回到线性空间范畴的例子,考虑

形的线性映射
。零映射
的矩阵表示为元素全零的矩阵
,根据(2)有:

根据(3)有:

如果范畴

​有零对象,且​
是零同态,那么下图中的极限​称为
核(kernel)

19ed51510edf8f7ecc99ff9038901a20.png

用线性代数的例子易于理解,这里

为恒同映射,这样便满足了均衡的条件,即对于
复合映射满足
。若有线性空间
,且它们为嵌套的线性子空间:
,显然可以构造线性映射
,且存在唯一的线性映射
,它就是自然投影映射。

余极限与余核

在极限的定义中,将箭头反向可以得到余极限(colimit)的定义。进一步,可以定义余均衡子(co-equalizer),以及余核(cokernel)。我们把这几个概念,连同前面的概念放在一张图上:

29f652bcc00ecbe6094c4df42055aad1.png

其中:

  • 的均衡子;
  • 的余均衡子;

为零同态时:
  • 的均衡子
    的核;
  • 的余均衡子
    的余核;
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值