目录
马氏距离(Mahalanobis Distance)是度量学习中一种常用的距离指标,同欧氏距离、曼哈顿距离、汉明距离等一样被用作评定数据之间的相似度指标。但却可以应对高维线性分布的数据中各维度间非独立同分布的问题。
1 简单理解协方差的物理意义
(1)正相关
在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况:

当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大 Y 也越大, X 越小 Y 也越小,这种情况,我们称为“正相关”。
(2)负相关

当X, Y 的联合分布像上图那样时,我们可以看出,大致上有:X 越大 Y 反而越小,X 越小 Y 反而越大,这种情况,我们称为“负相关”。
(3)不相关

当X, Y 的联合分布像上图那样时,我们可以看出:既不是 X 越大 Y 也越大,也不是 X 越大 Y 反而越小,这种情况我们称为“不相关”。
怎样将这3种相关情况,用一个简单的数字表达出来呢?
- 在图中的区域(1)中,有 X>EX ,Y-EY>0 ,所以(X-EX)(Y-EY)>0;
- 在图中的区域(2)中,有 X<EX ,Y-EY>0 ,所以(X-EX)(Y-EY)<0;
- 在图中的区域(3)中,有 X<EX ,Y-EY<0 ,所以(X-EX)(Y-EY)>0;
- 在图中的区域(4)中,有 X>EX ,Y-EY<0 ,所以(X-EX)(Y-EY)<0。
当X 与Y 正相关时,它们的分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E(X-EX)(Y-EY)>0 。
当 X与 Y负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有E(X-EX)(Y-EY)<0。
当 X与 Y不相关时,它们在区域(1)和(3)中的分布,与在区域(2)和(4)中的分布几乎一样多,所以平均来说,有E(X-EX)(Y-EY)=0。
所以,我们可以定义一个表示X, Y 相互关系的数字特征,也就是协方差
cov(X, Y) = E(X-EX)(Y-EY)。
- 当 cov(X, Y)>0时,表明X与Y 正相关;
- 当 cov(X, Y)<0时,表明X与Y负相关;
- 当 cov(X, Y)=0时,表明X与Y不相关。
这就是协方差的意义。
在介绍马氏距离之前,我们先来看如下几个概念:
-
方差:方差是标准差的平方,而标准差的意义是数据集中各个点到均值点距离的平均值。反应的是数据的离散程度。
-
协方差: 标准差与方差是描述一维数据的,当存在多维数据时,我们通常需要知道每个维数的变量中间是否存在关联。协方差就是衡量多维数据集中,变量之间相关性的统计量。比如说,一个人的身高与他的体重的关系,这就需要用协方差来衡量。如果两个变量之间的协方差为正值,则这两个变量之间存在正相关,若为负值,则为负相关。
-
协方差矩阵: 当变量多了,超过两个变量了。那么,就用协方差矩阵来衡量这么多变量之间的相关性。假设 X 是以 n 个随机变数(其中的每个随机变数是也是一个向量,当然是一个行向量)组成的列向量:

其中,
是第i个元素的期望值,即

本文深入解析了马氏距离的物理意义,包括协方差的正负相关和不相关,介绍了马氏距离的定义、推导及其在处理高维数据中的优势。还讨论了马氏距离与欧氏距离的区别,以及其在度量学习中的应用。
最低0.47元/天 解锁文章
2221

被折叠的 条评论
为什么被折叠?



