格兰杰因果检验_【视频教程】Eviews系列15|VAR模型和VEC模型之格兰杰因果检验与最优滞后阶数判断...

本文介绍了格兰杰因果检验的前提与应用,通过实例展示了如何分析两个变量之间是否存在因果关系。检验结果显示,在5%的显著性水平下,DX1和DY互不构成格兰杰因果关系。此外,文章还探讨了最优滞后阶数的判断,通过LR、FPE等统计量确定滞后1阶为最优选择。
bcfe97d5f794098fd49d1367e5aa5beb.gif点击上面“蓝字”关注我们  本期学习的内容是格兰杰因果检验与最优滞后阶数判断。实操:1格兰因果检验注:格兰杰因果检验的前提条件为:变量必须为平稳序列,若变量不平稳,则不能进行格兰杰因果检验。b59fb148048a1f05a05b5c8acea2df13.png上图表格展示的三个变量的格兰杰因果检验结果从中能够看出,当原假设为“DX1不是DY的格兰杰原因”时,经过F检验对应的统计值为0.1192,相应的P值为0.8879,大于0.05,可见在5%的显著性水平下,不能拒绝原假设,即DX1不是DY的格兰杰原因;反之,当原假设为“DY不是DX1的格兰杰原因”时,经过F检验对应的统计值为0.2489,相应的P值为0.2489,大于0.05,可见在5%的显著性水平下,不能拒绝原假设,即DY不是DX1的格兰杰原因。按照同样的分析方式,我们发现,在5%的显著性水平下,DY、DX1与DX2之间并不互为因果关系。2最优滞后阶数判断0d1eb6bcb53c294d9942dedad67a338e.png在进行相关检验后,我们对其进行最优滞后阶数的判断,上图展示的是5个统计量LR,FPE,AIC,SC及HQ不同滞后期的评价值。能够看出,LR显示的最优滞后阶数为滞后1阶,FPE显示的最优滞后阶数为1阶,同样,其余几个变量的最优滞后阶数为滞后1阶,由此,我们确定的最优滞后阶数为滞后1阶。判断最优滞后阶数的原则为:(1)不同滞后阶数中,被5个评价量选中最多的滞后阶数为最优滞后阶数;(2)若有两个滞后阶数的评价量数量一样,则以AIC或SC的结果为准。e7a8f491c24284a5b89a4680db6d675f.png90989b3fb4c4573074c686e1647224a5.png

未完待续,下期见

90989b3fb4c4573074c686e1647224a5.png
<think>嗯,用户现在想了解如何在Eviews中进行格兰杰因果检验,并选择最优滞后阶数。首先,我需要回忆一下之前用户的对话历史。用户之前问过如何导出一阶差分序列,我的回答包括了生成差分序列导出的步骤,还提到了平稳性检验ARDL-EMC模型的应用。现在用户的问题转向了格兰杰因果检验滞后阶数的选择,所以需要结合之前的引用内容来组织答案。 根据用户提供的引用,特别是引用[2][4],里面提到了平稳性检验、ADF检验VAR模型以及格兰杰因果检验的步骤。用户可能已经进行过平稳性检验,现在需要进一步做格兰杰因果检验,并且确定最优滞后阶数。需要确保步骤清晰,并且解释如何选择滞后阶数,这可能涉及到VAR模型的信息准则,比如AIC或SC。 首先,格兰杰因果检验的前提是数据平稳,或者存在协整关系。用户之前的回答中已经提到了如果数据不平稳需要进行差分,所以在进行格兰杰检验前可能需要确认数据的平稳性,这部分需要引用[2]中的内容。 然后,格兰杰检验Eviews中的具体操作步骤,用户引用[1]提到需要新建workfile,输入数据,然后进行检验,输入滞后阶数。但用户现在的问题是如何选择最优滞后阶数,所以需要详细说明选择方法,比如使用VAR模型确定最优滞后,然后使用该滞后阶数进行格兰杰检验。这可能涉及到引用[4]中的VAR模型训练滞后阶数识别。 另外,用户引用[3]提到Toda-Yamamoto方法,可能适用于非平稳数据,但需要说明在Eviews中的适用性,可能这里需要提到如果数据不平稳但存在协整关系时的处理方式。 需要分步骤回答,首先确保数据平稳或协整,然后通过VAR模型确定最优滞后,最后进行格兰杰检验。同时,要解释每个步骤的意义,比如为什么需要VAR模型的信息准则来选择滞后阶数,以及如何解读检验结果中的P值。 可能还需要提到,如果数据不平稳,可能需要差分后使用VAR,或者如果存在协整关系,使用VECM模型,如引用[2]中的说明。同时,注意用户可能混淆了格兰杰因果检验中的滞后阶数VAR模型最优滞后,需要明确这两者的关系,即在VAR模型确定最优滞后后,将该滞后用于格兰杰检验。 最后,要提醒用户格兰杰因果检验的局限性,比如它只能反映统计上的领先滞后关系,而非真正的因果关系,避免误解。这部分可以引用[4]中的局限部分,但需要简明扼要。 总结回答结构:1. 数据准备(平稳性检验);2. 确定最优滞后阶数VAR信息准则);3. 执行格兰杰检验;4. 结果解读;5. 注意事。同时,相关问题部分可以引导用户进一步了解相关主题,如VAR模型、协整检验等,以增强知识的连贯性。</think>### EViews格兰杰因果检验最优滞后阶数选择方法 在EViews中执行格兰杰因果检验需遵循**“平稳性检验确定滞后阶数→执行检验”**的流程。以下是具体步骤及方法: --- #### 一、数据准备:平稳性检验 1. **平稳性要求** 格兰杰因果检验要求时间序列**平稳**或存在**协整关系**。 - 若序列非平稳,需通过差分处理(如`d(y)`生成一阶差分),参考[^2]。 - 若存在协整关系(如Johansen检验结果显著),可直接对原始数据检验;否则需对差分后数据检验[^2]。 2. **ADF检验操作** 通过`Quick → Series Statistics → Unit Root Test`选择ADF检验,根据序列趋势特征(截距、时间趋势)选择模型,观察`Prob.`值: - **若`Prob. < 0.05`**:序列平稳,可直接检验。 - **若`Prob. > 0.05`**:需进行差分或协整检验[^2]。 --- #### 二、确定最优滞后阶数 最优滞后阶数需通过**VAR模型信息准则(AIC、SC、HQ)**确定,而非直接在格兰杰检验界面选择。步骤如下: 1. **构建VAR模型** - 菜单操作:`Quick → Estimate VAR`,输入变量(如`y x`)。 - 在`Lag Intervals`中设置最大滞后范围(如`1 4`表示尝试1~4阶)。 2. **选择最优滞后** EViews会自动输出各阶数的信息准则值,规则为: - **最小化AIC或SC值**:通常以AIC为主(侧重预测精度),SC更严格(侧重简洁性)。 - 若AICSC冲突,优先参考AIC或结合样本量调整[^4]。 3. **示例输出解读** | Lag | AIC | SC | |-----|------|------| | 1 | 2.31 | 2.45 | | 2 | 1.98 | 2.21 || 3 | 1.95 | 2.29 | 选择**Lag=2**(AIC最小)。 --- #### 三、执行格兰杰因果检验 1. **操作步骤** - 打开包含变量的`Group`对象(如`y x`)。 - 菜单选择:`View → Granger Causality`,输入VAR模型确定最优滞后阶数。 2. **结果解读** - **原假设**:`X does not Granger-cause Y`。 - **判断标准**: - 若`Prob. < 0.05`,拒绝原假设,认为`X`是`Y`的格兰杰原因[^1]。 - 示例: ```plaintext Pairwise Granger Causality Tests Null Hypothesis: Obs F-Statistic Prob. X does not Granger-cause Y 50 3.21 0.032 ``` 结论:`X`在5%显著性水平下是`Y`的格兰杰原因。 --- #### 四、注意事 1. **滞后阶数敏感性** 不同滞后阶数可能导致结论差异,需通过VAR模型严谨选择。 2. **协整关系处理** 若数据非平稳但存在协整关系,需改用**VECM模型**进行检验。 3. **局限性** 格兰杰因果反映统计预测关系,非真实因果关系,需结合经济理论解释[^4]。 --- ### 相关问题 1. VAR模型VECM模型的核心区别是什么? 2. 如何通过Johansen检验判断协整关系? 3. 格兰杰因果检验是否适用于高频金融数据?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值