onnx 测试_pytorch onnx onnxruntime tensorrt踩坑 各种问题

本文记录了在使用PyTorch 1.3.0/1.4.0导出ONNX模型到TensorRT 7.0过程中遇到的问题及解决方案,包括ONNX模型检查错误、ONNXRuntime输入数据类型不匹配、TensorRT不支持bilinear上采样的问题。
摘要由CSDN通过智能技术生成

做了一个小测试,发现pytorch onnx tensorrt三个库的版本存在微妙的联系,在我之前的错误实验中,PyTorch==1.3.0/1.4.0;Onnx==1.6.0;tensorrt=7.0,用以下包含一个上采样层的代码做测试:

import torch

import torch.nn as nn

import torch.nn.functional as F

import os

class TestModel(nn.Module):

def __init__(self):

super(TestModel, self).__init__()

def forward(self, x):

x = F.interpolate(x, (256, 256), mode = 'bilinear')

return x

torch_model = TestModel()

dummy_input = torch.randn((1, 3, 256, 256))

torch_out = torch.onnx.export(torch_model,

dummy_input,

'test_model.onnx',

verbose=True,

opset_version=11,)

得到的Onnx模型:

%2 : Tensor = onnx::Constant[value=[ CPUFloatType{0} ]]()

%3 : Tensor = onnx::Constant[value= 1 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值