java模拟退火算法求函数_模拟退火算法从原理到实战【基础篇】

本文深入探讨模拟退火算法,源于固体退火原理,用于解决组合优化问题。通过Metropolis准则,算法在高温时接受较差解以跳出局部最优,随着温度降低逐渐稳定。文中介绍了算法的基本思想、模型、流程,并通过Java代码实现解决旅行商问题(TSP)。模拟退火算法在寻找全局最优解时具有一定的随机性和并行性,但参数控制(如初始温度、退火速度和温度管理)是个挑战。此外,还给出了多个实际问题的应用示例,如求解质点重心、费马点和最小覆盖圆等。
摘要由CSDN通过智能技术生成

模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

模拟退火算法的模型

模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:

(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L

(2) 对k=1,……,L做第(3)至第6步:

(3) 产生新解S′

(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数

(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.

(6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

模拟退火的算法流程图如下:

bf734b3a18605f0a4e9c823021b5f289.png

模拟退火算法新解的产生和接受可分为如下四个步骤:

第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。

第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性

如果你对退火的物理意义还是晕晕的,没关系我们还有更为简单的理解方式。想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。

6b3315b727c8b14b0a6e8ece59f8405d.png

模拟退火其实也是一种Greedy算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以上图为例,模拟退火算法在搜索到局部最优解B后,会以一定的概率接受向右继续移动。也许经过几次这样的不是局部最优的移动后会到达B 和C之间的峰点,于是就跳出了局部最小值B。

根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为

a6d02bcaac6e0b9c567c2c1f4c80bcdf.png

Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。

总结起来就是:

若f( Y(i+1) ) <= f( Y(i) )  (即移动后得到更优解),则总是接受该移动;

若f( Y(i+1) ) > f( Y(i) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)相当于上图中,从B移向BC之间的小波峰时,每次右移(即接受一个更糟糕值)的概率在逐渐降低。如果这个坡特别长,那么很有可能最终我们并不会翻过这个坡。如果它不太长,这很有可能会翻过它,这取决于衰减 t 值的设定。

关于普通Greedy算法与模拟退火,有一个有趣的比喻:

普通Greedy算法:兔子朝着比现在低的地方跳去。它找到了不远处的最低的山谷。但是这座山谷不一定最低的。这就是普通Greedy算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向低处,也可能踏入平地。但是,它渐渐清醒了并朝最低的方向跳去。这就是模拟退火。

模拟退火算法的简单应用

作为模拟退火算法应用,讨论货郎担问题(Travelling Salesman Problem,简记为TSP):设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j) i,

j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。

求解TSP的模拟退火算法模型可描述如下:

解空间 解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2 ,……,wn),并记wn+1= w1。初始解可选为(1,……,n)

目标函数 此时的目标函数即为访问所有城市的路径总长度或称为代价函数:

我们要求此代价函数的最小值。

新解的产生 随机产生1和n之间的两相异数k和m,若k

(w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)

变为:

(w1, w2 ,…,wm , wm-1 ,…,wk+1

, wk ,…,wn).

如果是k>m,则将

(w1, w2 ,…,wk , wk+1 ,…,wm ,…,wn)

变为:

(wm, wm-1 ,…,w1 , wm+1 ,…,wk-1

,wn , wn-1 ,…,wk).

上述变换方法可简单说成是“逆转中间或者逆转两端”。

也可以采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。

代价函数差 设将(w1, w2 ,……,wn)变换为(u1, u2 ,……,un), 则代价函数差为:

根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:

Procedure TSPSA:begininit-of-T; {T为初始温度}S={1,……,n}; {S为初始值}termination=false;while termination=falsebegin

for i=1 to L do

begingenerate(S′form S);{从当前回路S产生新回路S′}Δt:=f(S′))-f(S);{f(S)为路径总长}IF(Δt<0) OR (EXP(-Δt/T)>Random-of-[0,1])

S=S′;

IF the-halt-condition-is-TRUE THEN

termination=true;

End;

T_lower;

End;

End

下面给出C++实现参考源码:

1 /*

2 模拟退火算法解决TSP问题3 输入格式(tsp.in):4 第1行:1个整数N,表示城市的数量5 第2..N+1行:每行有2个空格分开的整数x,y,第i+1行的x,y表示城市i的坐标6 */

7 #include

8 #include

9 #include

10 #include

11 #include

12 #include

13 #include

14

15 #define N 30 //城市数量

16 #define T 3000 //初始温度

17 #define EPS 1e-8 //终止温度

18 #define DELTA 0.98 //温度衰减率

19

20 #define LIMIT 1000 //概率选择上限

21 #define OLOOP 20 //外循环次数

22 #define ILOOP 100 //内循环次数

23

24 using namespacestd;25

26 //定义路线结构体

27 structPath28 {29 intcitys[N];30 doublelen;31 };32

33 //定义城市点坐标

34 structPoint35 {36 doublex, y;37 };38

39 Path bestPath; //记录最优路径

40 Point p[N]; //每个城市的坐标

41 double w[N][N]; //两两城市之间路径长度

42 int nCase; //测试次数

43

44 doubledist(Point A, Point B)45 {46 return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y -B.y));47 }48

49 void GetDist(Point p[], intn)50 {51 for(int i = 0; i < n; i++)52 for(int j = i + 1; j < n; j++)53 w[i][j] = w[j][i] =dist(p[i], p[j]);54 }55

56 void Input(Point p[], int &n)57 {58 scanf("%d", &n);59 for(int i = 0; i < n; i++)60 scanf("%lf %lf", &p[i].x, &p[i].y);61 }62

63 void Init(intn)64 {65 nCase = 0;66 bestPath.len = 0;67 for(int i = 0; i < n; i++)68 {69 bestPath.citys[i] =i;70 if(i != n - 1)71 {72 printf("%d--->", i);73 bestPath.len += w[i][i + 1];74 }75 else

76 printf("%d\n", i);77 }78 printf("\nInit path length is : %.3lf\n", bestPath.len);79 printf("-----------------------------------\n\n");80 }81

82 void Print(Path t, intn)83 {84 printf("Path is :");85 for(int i = 0; i < n; i++)86 {87 if(i != n - 1)88 printf("%d-->", t.citys[i]);89 else

90 printf("%d\n", t.citys[i]);91 }92 printf("\nThe path length is : %.3lf\n", t.len);93 printf("-----------------------------------\n\n");94 }95

96 Path GetNext(Path p, intn)97 {98 Path ans =p;99 int x = (int)(n * (rand() / (RAND_MAX + 1.0)));100 int y = (int)(n * (rand() / (RAND_MAX + 1.0)));101 while(x ==y)102 {103 x = (int)(n * (rand() / (RAND_MAX + 1.0)));104 y = (int)(n * (rand() / (RAND_MAX + 1.0)));105 }106 swap(ans.citys[x], ans.citys[y]);107 ans.len = 0;108 for(int i = 0; i < n - 1; i++)109 ans.len += w[ans.citys[i]][ans.citys[i + 1]];110 cout << "nCase =" << nCase <

116 void SA(intn)117 {118 double t =T;119 srand((unsigned)(time(NULL)));120 Path curPath =bestPath;121 Path newPath =bestPath;122 int P_L = 0;123 int P_F = 0;124 while(1) //外循环,主要更新参数t,模拟退火过程

125 {126 for(int i = 0; i < ILOOP; i++) //内循环,寻找在一定温度下的最优值

127 {128 newPath =GetNext(curPath, n);129 double dE = newPath.len -curPath.len;130 if(dE < 0) //如果找到更优值,直接更新

131 {132 curPath =newPath;133 P_L = 0;134 P_F = 0;135 }136 else

137 {138 double rd = rand() / (RAND_MAX + 1.0);139 //如果找到比当前更差的解,以一定概率接受该解,并且这个概率会越来越小

140 if(exp(dE / t) > rd && exp(dE / t) < 1)141 curPath =newPath;142 P_L++;143 }144 if(P_L >LIMIT)145 {146 P_F++;147 break;148 }149 }150 if(curPath.len OLOOP || t

158 int main(int argc, const char *argv[]) {159

160 freopen("TSP.data", "r", stdin);161 intn;162 Input(p, n);163 GetDist(p, n);164 Init(n);165 SA(n);166 Print(bestPath, n);167 printf("Total test times is : %d\n", nCase);168 return 0;169 }

TSP.data的数据格式如下,第一行的数字表示一个有多少座城市,第2至最后一行,每行有两个数字表示,城市的坐标(平面直角坐标系)。例如:

6

20 80

16 84

23 66

62 90

11 9

35 28

注意由于是基于蒙特卡洛的方法,所以上面代码每次得出的结果并不完全一致。你可以通过增加迭代的次数来获得一个更优的结果。

我们这里需要说明的是,在之前的文章里,我们用求最小值的例子来解释模拟退火的执行:如果新一轮的计算结果更前一轮之结果更小,那么我们就接受它,否则就以一个概率来拒绝或接受它,而这个拒绝的概率会随着温度的降低(也即是迭代次数的增加)而变大(也就是接受的概率会越来越小)。

但现在我们面对一个TSP问题,我们如何定义或者说如何获取下一轮将要被考察的哈密尔顿路径呢?在一元函数最小值的例子中,下一轮就是指向左或者向右移动一小段距离。而在TSP问题中,我们可以采用的方式其实是很多的。上面代码中GetNext()函数所采用的方式是随机交换两个城市在路径中的顺序。例如当前路径为 A->B->C->D->A,那么下一次路径就可能是A->D->C->B->A,即交换B和D。

1 public classTour{2 ... ...3 //Creates a random individual

4 public voidgenerateIndividual() {5 //Loop through all our destination cities and add them to our tour

6 for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {7 setCity(cityIndex, TourManager.getCity(cityIndex));8 }9 //Randomly reorder the tour

10 Collections.shuffle(tour);11 }12 ... ...13 }

可见把上一轮路径做一个随机的重排(这显然也是一种策略)。

我们对上述问题提出一种新的策略:

f0ba0ea250f5e7df94fedbb559054b9e.png

首先,我们需要创建一个城市类,它可以用来为旅行推销员的不同目的地建模。

1 /*

2 * City.java3 * Models a city4 */

5

6 packagesa;7

8 public classCity {9 intx;10 inty;11

12 //Constructs a randomly placed city

13 publicCity(){14 this.x = (int)(Math.random()*200);15 this.y = (int)(Math.random()*200);16 }17

18 //Constructs a city at chosen x, y location

19 public City(int x, inty){20 this.x =x;21 this.y =y;22 }23

24 //Gets city's x coordinate

25 public intgetX(){26 return this.x;27 }28

29 //Gets city's y coordinate

30 public intgetY(){31 return this.y;32 }33

34 //Gets the distance to given city

35 public doubledistanceTo(City city){36 int xDistance = Math.abs(getX() -city.getX());37 int yDistance = Math.abs(getY() -city.getY());38 double distance = Math.sqrt( (xDistance*xDistance) + (yDistance*yDistance) );39

40 returndistance;41 }42

43 @Override44 publicString toString(){45 return getX()+", "+getY();46 }47 }

接下来让我们创建一个可以跟踪城市的类:

1 /*

2 * TourManager.java3 * Holds the cities of a tour4 */

5

6 packagesa;7

8 importjava.util.ArrayList;9

10 public classTourManager {11

12 //Holds our cities

13 private static ArrayList destinationCities = new ArrayList();14

15 //Adds a destination city

16 public static voidaddCity(City city) {17 destinationCities.add(city);18 }19

20 //Get a city

21 public static City getCity(intindex){22 return(City)destinationCities.get(index);23 }24

25 //Get the number of destination cities

26 public static intnumberOfCities(){27 returndestinationCities.size();28 }29

30 }

现在来创建一个可以模拟旅行推销员之旅:

1 /*

2 * Tour.java3 * Stores a candidate tour through all cities4 */

5

6 packagesa;7

8 importjava.util.ArrayList;9 importjava.util.Collections;10

11 public classTour{12

13 //Holds our tour of cities

14 private ArrayList tour = new ArrayList();15 //Cache

16 private int distance = 0;17

18 //Constructs a blank tour

19 publicTour(){20 for (int i = 0; i < TourManager.numberOfCities(); i++) {21 tour.add(null);22 }23 }24

25 //Constructs a tour from another tour

26 publicTour(ArrayList tour){27 this.tour =(ArrayList) tour.clone();28 }29

30 //Returns tour information

31 publicArrayList getTour(){32 returntour;33 }34

35 //Creates a random individual

36 public voidgenerateIndividual() {37 //Loop through all our destination cities and add them to our tour

38 for (int cityIndex = 0; cityIndex < TourManager.numberOfCities(); cityIndex++) {39 setCity(cityIndex, TourManager.getCity(cityIndex));40 }41 //Randomly reorder the tour

42 Collections.shuffle(tour);43 }44

45 //Gets a city from the tour

46 public City getCity(inttourPosition) {47 return(City)tour.get(tourPosition);48 }49

50 //Sets a city in a certain position within a tour

51 public void setCity(inttourPosition, City city) {52 tour.set(tourPosition, city);53 //If the tours been altered we need to reset the fitness and distance

54 distance = 0;55 }56

57 //Gets the total distance of the tour

58 public intgetDistance(){59 if (distance == 0) {60 int tourDistance = 0;61 //Loop through our tour's cities

62 for (int cityIndex=0; cityIndex < tourSize(); cityIndex++) {63 //Get city we're traveling from

64 City fromCity =getCity(cityIndex);65 //City we're traveling to

66 City destinationCity;67 //Check we're not on our tour's last city, if we are set our68 //tour's final destination city to our starting city

69 if(cityIndex+1

76 tourDistance +=fromCity.distanceTo(destinationCity);77 }78 distance =tourDistance;79 }80 returndistance;81 }82

83 //Get number of cities on our tour

84 public inttourSize() {85 returntour.size();86 }87

88 @Override89 publicString toString() {90 String geneString = "|";91 for (int i = 0; i < tourSize(); i++) {92 geneString += getCity(i)+"|";93 }94 returngeneString;95 }96 }

最后,让我们创建模拟退火算法:

1 packagesa;2

3 public classSimulatedAnnealing {4

5 //Calculate the acceptance probability

6 public static double acceptanceProbability(int energy, int newEnergy, doubletemperature) {7 //If the new solution is better, accept it

8 if (newEnergy

12 return Math.exp((energy - newEnergy) /temperature);13 }14

15 public static voidmain(String[] args) {16 //Create and add our cities

17 City city = new City(60, 200);18 TourManager.addCity(city);19 City city2 = new City(180, 200);20 TourManager.addCity(city2);21 City city3 = new City(80, 180);22 TourManager.addCity(city3);23 City city4 = new City(140, 180);24 TourManager.addCity(city4);25 City city5 = new City(20, 160);26 TourManager.addCity(city5);27 City city6 = new City(100, 160);28 TourManager.addCity(city6);29 City city7 = new City(200, 160);30 TourManager.addCity(city7);31 City city8 = new City(140, 140);32 TourManager.addCity(city8);33 City city9 = new City(40, 120);34 TourManager.addCity(city9);35 City city10 = new City(100, 120);36 TourManager.addCity(city10);37 City city11 = new City(180, 100);38 TourManager.addCity(city11);39 City city12 = new City(60, 80);40 TourManager.addCity(city12);41 City city13 = new City(120, 80);42 TourManager.addCity(city13);43 City city14 = new City(180, 60);44 TourManager.addCity(city14);45 City city15 = new City(20, 40);46 TourManager.addCity(city15);47 City city16 = new City(100, 40);48 TourManager.addCity(city16);49 City city17 = new City(200, 40);50 TourManager.addCity(city17);51 City city18 = new City(20, 20);52 TourManager.addCity(city18);53 City city19 = new City(60, 20);54 TourManager.addCity(city19);55 City city20 = new City(160, 20);56 TourManager.addCity(city20);57

58 //Set initial temp

59 double temp = 10000;60

61 //Cooling rate

62 double coolingRate = 0.003;63

64 //Initialize intial solution

65 Tour currentSolution = newTour();66 currentSolution.generateIndividual();67

68 System.out.println("Initial solution distance: " +currentSolution.getDistance());69

70 //Set as current best

71 Tour best = newTour(currentSolution.getTour());72

73 //Loop until system has cooled

74 while (temp > 1) {75 //Create new neighbour tour

76 Tour newSolution = newTour(currentSolution.getTour());77

78 //Get a random positions in the tour

79 int tourPos1 = (int) (newSolution.tourSize() *Math.random());80 int tourPos2 = (int) (newSolution.tourSize() *Math.random());81

82 //Get the cities at selected positions in the tour

83 City citySwap1 =newSolution.getCity(tourPos1);84 City citySwap2 =newSolution.getCity(tourPos2);85

86 //Swap them

87 newSolution.setCity(tourPos2, citySwap1);88 newSolution.setCity(tourPos1, citySwap2);89

90 //Get energy of solutions

91 int currentEnergy =currentSolution.getDistance();92 int neighbourEnergy =newSolution.getDistance();93

94 //Decide if we should accept the neighbour

95 if (acceptanceProbability(currentEnergy, neighbourEnergy, temp) >Math.random()) {96 currentSolution = newTour(newSolution.getTour());97 }98

99 //Keep track of the best solution found

100 if (currentSolution.getDistance()

104 //Cool system

105 temp *= 1-coolingRate;106 }107

108 System.out.println("Final solution distance: " +best.getDistance());109 System.out.println("Tour: " +best);110 }111 }

结果如下:

Initial solution distance: 1966Final solution distance:911Tour:|180, 200|200, 160|140, 140|180, 100|180, 60|200, 40|160, 20|120, 80|100, 40|60, 20|20, 20|20, 40|60, 80|100, 120|40, 120|20, 160|60, 200|80, 180|100, 160|140, 180|

在这个例子中,我们能够超过我们初始随机生成路径的一半以上。很大程度上说明,当应用到某些类型的优化问题时,这个相对简单的算法是多么方便。

b4ab8dfe95c7fd2867e2f992c2fec467.png

模拟退火算法的参数控制问题

模拟退火算法的应用很广泛,可以求解NP完全问题,但其参数难以控制,其主要问题有以下三点:

(1) 温度T的初始值设置问题。温度T的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。实际应用过程中,初始温度一般需要依据实验结果进行若干次调整。(2) 退火速度问题。模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索(退火)是相当必要的,但这需要计算时间。实际应用中,要针对具体问题的性质和特征设置合理的退火平衡条件。(3) 温度管理问题。温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式:T(t+1)=k×T(t)

式中k为正的略小于1.00的常数,t为降温的次数。

例题推荐

给定n个质点,求重心,这n个质点的重心满足Σ(重心到点i的距离)*g[i]最小。---BZOJ 3680 参考题解请看这里

给n个点,找出一个点,使这个点到其他所有点的距离之和最小,也就是求费马点。---POJ 2420

给定三维空间的n点,找出一个半径最小的球把这些点全部包围住。---POJ 2069

dde874099d847c287f5445ff93c5975a.png

平面上给定n条线段,找出一个点,使这个点到这n条线段的距离和最小。参考源码在这里

地图中有N个陷阱,给出他们的坐标,求一个点,使得这个点到所有陷阱的最小距离最大。---POJ 1379

求一个椭球面上的一个点到原点的最短距离。---HDU 5017

找出一个点使得这个店到n个点的最长距离最短,即求最小覆盖圆的半径。---HDU 3932

给一个矩阵的长宽,再给n个点,求矩阵区域内某个点到各个点的最小距离的最大值,输出所求点的坐标。---HDU 1109

给定n个点的一个多边形,一个圆的半径,判断圆是否可以放在多边形里。---HDU 3644

给定n个点的坐标和它x和y方向的分速度,要求在任意时刻两两点之间距离最大值中的最小值。---HDU 4717

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值