基于深度神经网络的电力系统实时状态估计与预测

本文探讨了使用深度神经网络(DNNs)进行电力系统实时状态监测和预测。通过实验证明,基于DNN的PSSE方法在性能上显著优于传统方法,如Gauss-Newton PSSE求解器。文中提出Prox-linear网络结合物理优化方法,利用深度DNN预测电压对系统状态的影响,考虑了时间序列的非线性相关性,降低了计算成本,并在IEEE 57和118系统上展示了优越的效果。

请添加图片描述

利用深度神经网络(DNNs)进行电力系统实时监测。在IEEE 118系统的实际负载数据实验中,新的基于dnn的PSSE方案的性能几乎优于竞争对手的数量级,包括广泛采用的Gauss-Newton PSSE求解器。

基于数据驱动的DNN的改进处理电力系统实时监测(估计和预测)。为PSSE开发了Prox-linear网络,将网络神经网络与传统的基于物理的优化方法相结合。在此基础上,引入深度DNN来预测历史(估计)电压对电力系统状态的影响。基于模型的prox-linear网络的PSSE易于训练,计算成本低廉。所提出的基于DNN预测考虑了电压时间序列中的长期非线性相关性,增强了PSSE。在ieee57总线和118节点系统上使用真实负载数据进行的数值测试,说明了开发的方法相对于现有方案的优点。请添加图片描述
请添加图片描述
请添加图片描述
www.mx-dm.com

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值