
利用深度神经网络(DNNs)进行电力系统实时监测。在IEEE 118系统的实际负载数据实验中,新的基于dnn的PSSE方案的性能几乎优于竞争对手的数量级,包括广泛采用的Gauss-Newton PSSE求解器。
基于数据驱动的DNN的改进处理电力系统实时监测(估计和预测)。为PSSE开发了Prox-linear网络,将网络神经网络与传统的基于物理的优化方法相结合。在此基础上,引入深度DNN来预测历史(估计)电压对电力系统状态的影响。基于模型的prox-linear网络的PSSE易于训练,计算成本低廉。所提出的基于DNN预测考虑了电压时间序列中的长期非线性相关性,增强了PSSE。在ieee57总线和118节点系统上使用真实负载数据进行的数值测试,说明了开发的方法相对于现有方案的优点。


www.mx-dm.com

本文探讨了使用深度神经网络(DNNs)进行电力系统实时状态监测和预测。通过实验证明,基于DNN的PSSE方法在性能上显著优于传统方法,如Gauss-Newton PSSE求解器。文中提出Prox-linear网络结合物理优化方法,利用深度DNN预测电压对系统状态的影响,考虑了时间序列的非线性相关性,降低了计算成本,并在IEEE 57和118系统上展示了优越的效果。
最低0.47元/天 解锁文章
1579





