分子动力学模拟软件_实惠的分子动力学模拟个人台式机装机和测试

最近我们组新添了一台简易的GPU个人工作站,主要用于分子动力学模拟和机器学习,配置如下:

CPU       i5 9600k    
散热器     酷冷至尊T400i塔式风扇   
内存       金士顿16G DDR4 2666骇客神条   2条
硬盘1      西部数据4T企业版 7200转  
硬盘2      三星976 EVO PLUS 256G
主板       华硕B360M-D          
显卡       影驰GTX2080 SUPER    
机箱       安钛克P7       
电源       台达额定850W  

主要参考sob的装机配置推荐(http://sobereva.com/444),总价在¥12000左右。出货时固态盘安装了WINDOWS系统,但是大部分计算化学软件都是在Linux系统下运行的,于是在机械硬盘分区安装Linux发行版。可以选择的免费的Linux发行版有Ubuntu,Centos等。考虑到在Ubuntu下安装各种软件环境比较方便,于是选择了与Ubuntu同宗同源的Deepin国产发行版。它也被华为Matebook 14 第三方版本所采用,具有类苹果的操作UI和类Windows的交互逻辑,同时安装也比较便捷。

首先在(https://www.deepin.org/download/)下载深度启动盘制作工具,并下载深度操作系统15.11的镜像,准备一个大于8G的空U盘。启动制作工具,导入镜像并写入U盘。

将U盘插入GPU主机的USB口,在BIOS中设置从U盘引导。选择安装Deepin,并安装到一个空白的分区。等待20分钟即可安装完毕,机器即将重启,务必将U盘拔下。

启动后默认是使用的CPU的亮机卡,因此需要安装nVidia驱动以及Cuda Toolkit。因为Deepin15.11的默认gcc版本是6.5,因此需要安装Cuda 10.1版本的GPU编程工具箱。

安装显卡驱动
  • 查看显卡信息

    lspci  | grep -i vga
    #显示有GeForce显卡
  • 下载官方Linux驱动

    https://www.nvidia.cn/Download/index.aspx?lang=cn
    或者
    https://www.geforce.com/drivers
    选择下载适合自己显卡的Linux驱动
  • 禁用nouveau驱动

    sudo echo "blacklist nouveau" >> /etc/modprobe.d/blacklist-nouveau.conf
    sudo echo "options nouveau modeset=0" >> /etc/modprobe.d/blacklist-nouveau.conf
    #重启
    sudo reboot
    sudo update-initramfs -u
    #执行以下命令,若无输出说明禁用成功
    lsmod | grep nouveau
  • 安装驱动

    #先关闭图像界面,切换tty2
    ctrl+alt+f2
    #关闭图像界面
    sudo service lightdm stop
    #切换进显卡驱动下载目录
    sudo chmod a+x NVIDIA-Linux-x86_64-x.run
    sudo ./NVIDIA-Linux-x86_64-x.run
    #安装过程中除了是否支持32外全部选是。
    #安装完成后重启电脑
    sudo reboot
    #输入nvidia-smi 查看是否成功安装好显卡驱动。
    #以上参考 https://www.jianshu.com/p/caa02259e51d
安装Cuda Toolkit

Deepin15.11相当于Ubuntu16,在https://developer.nvidia.com/cuda-downloads上下载工具箱。

c2390395a01f81c6beb4587df54a6e7a.png

上述教程在我们主机上无法成功安装Cuda Toolkit,https://www.findhao.net/easycoding/2562.html 的一个帖子提供了解决办法,使用普通帐号安装。

mkdir ~/Downloads/cuda10.1
cd ~/Downloads/
./cuda_10.1.243_418.87.00_linux.run --silent --toolkit --toolkitpath=~/Downloads/cuda10.1 --defaultroot=~/Downloads/cuda10.1 --samples --samplespath=~/Downloads

没有报错,说明安装成功了,在系统的/usr/local/下创建toolkit10的链接:

sudo ln -s ~/Downloads/cuda10.1 /usr/local/cuda
#重新启动
sudo reboot

加入环境变量

CUDA_HOME=/usr/local/cuda/
export PATH=$PATH:$CUDA_HOME/bin/
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64
安装Gromacs Cuda版本

主要参考教程http://sobereva.com/457

#安装fftw
mkdir build
cd build
export CMAKE_PREFIX_PATH=/sob/fftw338
cmake .. -DCMAKE_INSTALL_PREFIX=/sob/gmx2018.4 -DGMX_SIMD=AVX2_256 -DGMX_MPI=OFF -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda
#不使用AVX512指令集,不是用MPI 仅用openMP
make -j4 
make install 
GROMACS运算测试

以李继存老师博客上的教程(http://jerkwin.github.io/GMX/GMXtut-0)为例进行对比:漏斗网蜘蛛毒素肽的溶剂化研究的成品模拟对比测试。为了使用GPU,energygrps设为了System,测试软件同为GROMACS2019.2版本。

f29ca4cde7f7dffdd686f42ea6026792.png

对比结果如下:

17b3fb649fd60f6beb1c87fccff1f361.png

一块2080显卡的普通台式机的Gromcas的算力远远超过了一台GPU主机,而且价格也比较实惠。

<think>嗯,用户现在问的是关于分子动力学模拟的软件推荐,特别是适合新手入门、成本低且配置要求不高的。首先,我得回忆一下常见的分子动力学软件有哪些,然后评估它们的易用性、成本硬件需求。 首先,常见的MD软件包括GROMACS、AMBER、NAMD、LAMMPS、CHARMM、OpenMM,还有像Desmond、CP2K这些。不过用户需要的是适合新手的,可能配置要求不高的。GROMACS我之前在之前的对话里详细讲过步骤,所以用户可能已经接触过,但需要确认是否适合新手。GROMACS虽然功能强大,但配置要求可能不低,不过它优化得很好,可以在普通台式机上运行小体系。不过对于新手来说,学习曲线可能有点陡峭,因为需要处理命令行参数文件。 AMBERCHARMM主要是商业软件,虽然学术版可能便宜,但可能不适合低成本需求。NAMD并行效率高,但同样需要一定的配置,且学习起来可能需要时间。LAMMPS是开源的,非常灵活,但可能需要较多的编程脚本编写,对新手不太友好。OpenMM是Python友好的,支持GPU加速,可能配置要求低,特别是如果用户有NVIDIA显卡的话,可以利用GPU加速,这样在低配置机器上也能跑得动。而且OpenMM的Python API可能让新手更容易上手,因为有代码示例文档。 另外,CP2K虽然主要用于量子力学/分子力学,但也有MD功能,不过可能不太适合纯新手。Desmond是商业软件,可能成本高。所以综合来看,可能推荐GROMACSOpenMM作为新手的选择,因为它们都有较好的文档社区支持,同时可以在较低配置下运行。 不过需要确认这些软件的实际硬件需求。例如,GROMACS在CPU上优化得很好,如果用户有现代的多核CPU,即使是桌面级,也可以运行小规模的模拟。而OpenMM如果支持GPU,可能更快,但需要兼容的显卡。如果用户没有GPU,可能还是GROMACS更合适。另外,有些软件比如YASARA,可能有更友好的图形界面,但成本较高,不适合低成本需求。 还需要考虑安装的难易程度。GROMACS在Linux上安装可能需要编译,但有些预编译的包或者使用容器如Docker可能简化安装。OpenMM的安装可能更简单,特别是通过conda或pip安装Python包。对于新手来说,安装过程是否容易也很重要。 另外,是否有教程社区支持。GROMACS有很多教程用户社区,OpenMM也有不错的文档示例。这些因素都影响新手的学习曲线。因此,可能推荐GROMACS作为第一选择,虽然需要命令行操作,但资源丰富;而OpenMM作为第二选择,特别是如果用户熟悉Python的话。 最后,用户提到“低成本”,所以商业软件可能不合适,需要推荐开源或免费学术许可的软件。综上,GROMACSOpenMM比较符合,而LAMMPS虽然强大但可能对新手较难。需要详细说明每个推荐软件的特点,为什么适合新手,以及硬件需求如何。</think>以下是分子动力学(Molecular Dynamics, MD)模拟常用软件的介绍,以及针对新手入门、低成本、低配置需求的推荐: --- ### **一、主流分子动力学软件概览** 1. **GROMACS** - **特点**:开源、高度优化、支持多平台(CPU/GPU加速)。 - **适用场景**:生物大分子(蛋白质、核酸)、溶液体系。 - **优势**: - 计算效率极高,适合普通台式机运行小体系。 - 社区资源丰富,教程详细(如官方文档、YouTube教程)。 - 支持多种力场(AMBER、CHARMM、OPLS等)。 - **硬件需求**: - 最低配置:4核CPU,8GB内存(可运行小蛋白+水盒子)。 - 推荐配置:多核CPU或支持CUDA的GPU(显著加速计算)。 2. **OpenMM** - **特点**:开源、Python接口友好、支持GPU加速。 - **适用场景**:快速搭建自定义模拟流程,适合编程基础较好的用户。 - **优势**: - 通过Python脚本控制模拟,灵活性高。 - 内置示例代码交互式教程(如Jupyter Notebook)。 - 对低端GPU(如NVIDIA GTX系列)支持良好。 - **硬件需求**: - 支持CUDA的GPU(可选但非必需),普通CPU亦可运行。 3. **LAMMPS** - **特点**:开源、高度模块化、支持复杂体系(如材料、界面)。 - **适用场景**:材料科学、纳米颗粒、非生物体系。 - **劣势**: - 学习曲线较陡,需编写输入脚本。 - 生物分子相关功能不如GROMACS完善。 4. **NAMD** - **特点**:并行效率极高、支持大规模体系。 - **适用场景**:超大型体系(如病毒颗粒、细胞膜)。 - **劣势**: - 配置要求高(需多节点集群)。 - 对新手不够友好(依赖配置文件)。 5. **AMBER** - **特点**:商业软件(学术低价)、生物分子力场精度高。 - **适用场景**:蛋白质-配体相互作用、自由能计算。 - **劣势**: - 需购买许可证(学术版约$200)。 - 安装配置较复杂。 --- ### **二、新手入门推荐** #### **1. 首推:GROMACS** - **推荐理由**: - **低成本**:完全免费,无商业限制。 - **低配置需求**: - 可运行于普通笔记本电脑(如4核CPU+8GB内存)。 - 小体系(如溶菌酶+水盒子)模拟时间约几小时至一天。 - **学习资源丰富**: - 官方教程(如“Lysozyme in Water”分步指南)。 - 中文社区(如小木虫、知乎)问题解答详细。 - **典型流程**: ```bash # 示例:能量最小化(普通笔记本可运行) gmx grompp -f minim.mdp -c system.gro -p topol.top -o em.tpr gmx mdrun -v -deffnm em ``` #### **2. 备选:OpenMM** - **推荐理由**: - **低配置需求**: - 支持GPU加速(利用游戏显卡如NVIDIA GTX 1660即可提速)。 - 纯CPU模式下也能完成简单模拟。 - **代码友好**: - 通过Python脚本控制,适合有编程基础的用户。 - 交互式学习(如Google Colab免费GPU资源)。 - **示例代码**: ```python from openmm.app import PDBFile, Simulation from openmm import LangevinMiddleIntegrator, Platform # 加载PDB文件力场 pdb = PDBFile('input.pdb') forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml') # 创建模拟对象 system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME) integrator = LangevinMiddleIntegrator(300*K, 1/picosecond, 0.002*picoseconds) simulation = Simulation(pdb.topology, system, integrator) simulation.reporters.append(PDBReporter('output.pdb', 1000)) # 每1000步保存一帧 simulation.step(10000) # 运行10000步 ``` --- ### **三、低成本配置建议** 1. **硬件方案**: - **CPU**:Intel i5或Ryzen 5(4核以上)。 - **内存**:16GB(避免频繁交换内存)。 - **GPU(可选)**:NVIDIA GTX 1660或更高(需支持CUDA)。 2. **云平台替代方案**: - **Google Colab**:免费提供GPU资源(适合OpenMM脚本测试)。 - **AWS/Azure学生优惠**:部分云平台提供免费计算额度。 --- ### **四、学习路径建议** 1. **第一步**:通过GROMACS官方教程完成“溶菌酶在水中”模拟,掌握预处理→能量最小化→平衡→成品模拟流程。 2. **第二步**:学习用VMD或PyMOL可视化轨迹,分析RMSD、RMSF等基本指标。 3. **进阶**:尝试OpenMM自定义模拟(如修改力场参数或添加约束)。 --- ### **五、避坑指南** - **避免复杂体系**:新手优先选择小蛋白(如溶菌酶)或短肽作为练习对象。 - **合理设置截断半径**:建议`rvdw = 1.2 nm, rcoulomb = 1.2 nm`以减少计算量。 - **控制模拟时长**:首次模拟设为1-10 ns即可,避免过长的等待时间。 若有具体软件安装或模拟问题,欢迎进一步讨论!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值