PointRCNN :
基于
3D
点云下的目标检测
前言
2019 CVPR
香港中文大学的一篇
3D
目标检测的文章,
是第一个输入只有原始点云数据的两
阶段
3D
目标检测方法,
截至发表似乎在
KITTI
排行榜上拍第一(作者说的)
,但是现在不
是了。用作者给的
pre-trained model
测试了,发现效果真的不错!
论文亮点
1.
第一个只用输入原始点云的两阶段
3d
目标检测方法。
2.
使用前景点(语义分割得到的有效点)回归检测框,减少了检测框的搜索范围。
3. canonical refinement
的方法。
4.
基于
bin
的
loss
。
思路概括
目前作者公布的代码只能对一个类别做检测,假设这个类就是“车”,这也是
KITTI
数据集中
标注最多的类,这个目标检测方法分两个阶段:
(
1
)第一阶段:生成一大堆很冗余的
bounding box
。首先,对点云语义分割,对每个点的
到一个预测
label
,比如现在:对所有判断是“车”的点(也叫做前景点)
,赋予
label=1
,其他
点(也叫做背景点)
,赋予
label=0
。
然后,用所有前景点生成
bounding box
,一个前景点对应一个
bounding box
。但是必须要
保证语义分割结果的准确。然后作者使用了一些去除冗余的方法,继续减少
bounding
box
的数目,这一阶段结束的时候只留下
300
个
bounding box
。
(
2
)
第二阶段:
继续优化上一阶段生成的
bounding box
。
首先,
对前一阶段生成的
bounding
box
做
旋转
平移,
把这
些
bounding
box
转
换到自
己的正
规划坐
标系下
(
canonical
coordinates
)
。
结合上然后,
通过点云池化等操作的到每个
bounding box
的特征,
再结合第
一阶段的到的特征,进行
bounding
box
的修正和置信度的打分,从而到最终的
bounding