中心极限定理_概率论——大数定律与中心极限定理

本文深入探讨概率论中的大数定律与中心极限定理,包括切比雪夫不等式、马尔可夫与切比雪夫大数定律,以及独立同分布和不同分布下的中心极限定理。通过实例和直观解释,阐述这些定理在随机变量概率分析中的应用。
摘要由CSDN通过智能技术生成

b31c6d46c635197858d83ccf241a5add.png

学习阶段:大学数学。

前置知识:微积分、随机变量、数学期望、方差。

1. 切比雪夫不等式

切比雪夫不等式可以对随机变量偏离期望值的概率做出估计,这是大数定律的推理基础。

以下介绍一个对切比雪夫不等式的直观证明。

1.1 示性函数

对于随机事件A,我们引入一个示性函数

,即一次试验中,若A发生了,则
的值为1,否则为0.

现在思考一个问题:这个函数的自变量是什么?

我们知道,随机事件在做一次试验后有一个确定的观察结果,称这个观察结果为样本点

,所有可能的样本点的集合称为
样本空间
. 称
的一个子集
为随机事件。

例如,掷一个六面骰子,记得到数字k的样本点为

,则
,随机事件“得到的数字为偶数”为
.

由此可知,示性函数是关于样本点的函数,即

(试验后)

在试验之前,我们能获得哪个样本点也未知的,因此样本点也是个随机事件,记为

,相应地示性函数可以记为

(试验前)

在试验之前,

值也是未知的,因此
是个二值随机变量。这样,我们就建立了随机事件A和随机变量
之间的一一对应关系。

求数学期望可得

是什么?是样本点落在A里面的概率,也就是A事件发生的概率
,由此我们就得到了示性函数很重要的性质:其期望值正是对应的随机事件的概率,即

1.2 马尔可夫不等式

对于非负的随机变量

和定值
,考虑随机事件
&#
  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值