概率论:中心极限定理、马尔科夫不等式、切比雪夫不等式、大数定理

一、中心极限定理

1.1 独立同分布的中心极限定理
1.1.1 定理

设 X 1 , X 2 , . . . , X n 为 相 互 独 立 、 服 从 同 一 分 布 的 随 机 变 量 序 列 , 且 E ( X i ) = μ , D ( X i ) = σ 2 ≠ 0 ( i = 1 , 2 , . . . n ) , 则 对 于 任 意 x , 有 : 设X_1,X_2,...,X_n为相互独立、服从同一分布的随机变量序列,且E(X_i)=\mu,D(X_i)=\sigma^2\ne0(i=1,2,...n),则对于任意x,有: X1,X2,...,XnE(Xi)=μ,D(Xi)=σ2=0(i=1,2,...n)x

lim ⁡ n → ∞ P { ∑ i = 1 n X i − n μ n σ ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) ( 1.1 ) \lim_{n\to\infty}P\begin{Bmatrix}{\sum_{i=1}^nX_i-n\mu\over\sqrt{n}\sigma}\le x\end{Bmatrix}=\int_{-\infty}^x{1\over\sqrt{2\pi}}e^{-{t^2\over2}}dt=\Phi(x)\quad\quad\quad\quad\quad\quad (1.1) limnP{n σi=1nXinμx}=x2π 1e2t2dt=Φ(x)1.1

该定理通常被称为林德伯格-莱维(Lindeberg-Levy)定理。

来看下上面定理的含义:
若记:

Y n = ∑ i = 1 n X i − n μ n σ Y_n={\sum_{i=1}^nX_i-n\mu\over\sqrt{n}\sigma} Yn=n σi=1nXinμ

F Y n ( x ) F_{Y_n}(x) FYn(x) Y n Y_n Yn的分布函数,则1.1式可以写成:

l i m n → ∞ F Y n ( x ) = Φ ( x ) lim_{n\to\infty}F_{Y_n}(x)=\Phi(x) limnFYn(x)=Φ(x)

这表明,当充分大时, Y n Y_n Yn近似服从正态分布 N ( 0 , 1 ) N(0,1) N(0,1),即:

∑ i = 1 n X i − n μ n σ ∽ N ( 0 , 1 ) {\sum_{i=1}^nX_i-n\mu\over\sqrt{n}\sigma}\backsim N(0,1) n σi=1nXinμN(0,1)

从而当n充分大时:

∑ i = 1 n ∽ N ( n μ , n σ 2 ) ( 1.2 ) \sum_{i=1}^n\backsim N(n\mu,n\sigma^2)\quad\quad\quad\quad\quad\quad(1.2) i=1nN(nμ,nσ2)1.2

式1.2说明,不论 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn服从什么分布,只要满足定理的条件,当n充分大时,就可以把 ∑ i = 1 n X i \sum_{i=1}^nX_i i=1nXi做为正态随机变量处理,这个性质很重要。

将定理稍作变形,可以得到这个表现形式:
X ‾ − μ σ n ∽ N ( 0 , 1 ) {{\overline{X}-\mu}\over \sigma\sqrt{n}}\backsim N(0,1) σn XμN(0,1)
即:
X ‾ ∽ N ( μ , σ 2 n ) \overline{X}\backsim N(\mu,{\sigma^2\over n}) XN(μ,nσ2),其中 X ‾ = 1 n ∑ i = 1 n X i \overline{X}={1\over n}\sum_{i=1}^nX_i X=n1i=1nXi

由以上推导可知,无论 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn是服从什么分布,其算术平均值当n充分大是总是近似地服从正态分布。这一结果是数理统计中大样本理论的基础。

https://wenku.baidu.com/view/6db8601ac950ad02de80d4d8d15abe23482f0338.html?fr=search

二、马尔科夫不等式&切比雪夫不等式

切比雪夫不等式描述了这样一个事实,事件大多会集中在平均值附近。且切比雪夫不等式是马尔科夫不等式的特殊情况,因此首先看下马尔科夫不等式

2.1 马尔科夫不等式

其不等式表示如下:
P ( X ≥ a ) ≤ E ( X ) a P(X\ge a)\le{E(X)\over a} P(Xa)aE(X),其中 X ≥ 0 X\ge0 X0

2.1.1 直观感受

通过 μ = 1.3 , σ = 0.5 \mu=1.3,\sigma=0.5 μ=1.3σ=0.5的正态分布来展示:
在这里插入图片描述

2.1.2 证明

代数证明:

马尔科夫不等式有一个条件:X是一个非负的随机变量

E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x E(x)=\int_{-\infty}^{+\infty}xf(x)dx E(x)=+xf(x)dx

≥ ∫ t + ∞ x f ( x ) d x \quad\quad\ge\int_t^{+\infty}xf(x)dx t+xf(x)dx

≥ t ∫ t + ∞ f ( x ) d x \quad\quad\ge t\int_t^{+\infty}f(x)dx tt+f(x)dx

= t P ( x ≥ t ) \quad\quad=tP(x\ge t) =tP(xt)

将t从等式右端移到左端,得证

几何证明:
首先引入示性函数 I { A } I_{\{A\}} I{A}的概念,示性函数只有在事件A成立时才返回1,否则为0. 我们需要使用的一个引理是,当事件是如下形式,如 A = { X > a } A=\{X>a\} A={X>a}时,示性函数的期望可以表示事件发生的概率,即 E ( I { A } ) = P ( A ) E(I_{\{A\}})=P(A) E(I{A})=P(A)

引入示性函数后,我们就可以把概率我呢提转移到更直观的空间上。举例而言,我们知道,对于任意的非负x和b:
I { x ≥ b } ≤ x b I_{\{x\ge b\}}\le{x\over b} I{xb}bx
从几何角度来说,即 x b {x\over b} bx在第一象限永远不低于 I { x ≥ b } I_{\{x\ge b\}} I{xb},如图所示:
在这里插入图片描述
将自变量换为随机变量X,上述不等式同样成立,再对不等式两边
求均值,就可以得到:

P ( X ≥ b ) ≤ E ( X ) b P(X\ge b)\le{E(X)\over b} P(Xb)bE(X)

2.2 切比雪夫不等式

设 随 机 变 量 X 具 有 数 学 期 望 E ( X ) = μ , 方 差 D ( X ) = σ 2 , 则 对 于 任 意 k > 0 都 有 : 设随机变量X具有数学期望E(X)=\mu,方差D(X)=\sigma^2,则对于任意k>0都有: XE(X)=μD(X)=σ2k>0

P { ∣ X − E ( X ) ∣ ≥ k σ } ≤ 1 k 2 P\{|X-E(X)|\ge k\sigma\}\le{1\over k^2} P{XE(X)kσ}k21

2.2.1 直观感受

在这里插入图片描述

2.2.2 证明

几何证明:

同样采用示性函数来证明,对于任意的x,a和b,由示性函数可知:
I { ∣ x − a ∣ ≥ b } ≤ ( x − a ) 2 b 2 I_{\{|x-a|\ge b\}}\le{(x-a)^2\over b^2} I{xab}b2(xa)2
其中右半部分是一个二次函数,左半部分是两端取1的示性函数,这个不等式画出来如下所示:
在这里插入图片描述
二次函数的值在任意点都不会低于示性函数,其中,两个坐标轴的交点(原点)实际上为 ( a , 0 ) (a,0) (a,0),而两条虚线对应的x轴的值分别为a-b和a+b。
将自变量x变为随机变量X,以上不等式依然成立,此时再对不等式两边求均值,同时设定a为随机变量X的均值 E ( X ) E(X) E(X),就可以得到切比雪夫不等式:

P ( ∣ X − μ ∣ ≥ b ) ≤ V a r ( X ) b 2 P(|X-\mu|\ge b)\le{Var(X)\over b^2} P(Xμb)b2Var(X)

https://www.zhihu.com/question/27821324/answer/248693398

三、大数定理

3.1 随机变量序列依概率收敛
3.1.1 定义:

设 随 机 变 量 序 列 Y 1 , Y 2 , . . . , Y n , . . . , 若 存 在 某 常 数 a , 使 得 ∀ ε > 0 , 均 有 : l i m n → + ∞ P { ∣ Y n − a ∣ < ε } = 1 设随机变量序列Y_1,Y_2,...,Y_n,...,若存在某常数a,使得\forall \varepsilon>0,均有:lim_{n\to+\infty}P\{|Y_n-a|<\varepsilon\}=1 Y1,Y2,...,Yn,...a使ε>0,limn+P{Yna<ε}=1
则 称 随 机 变 量 序 列 { Y n } 依 概 率 收 敛 于 常 数 a , 记 为 : Y n → P a 则称随机变量序列\{Y_n\}依概率收敛于常数a,记为:Y_n\xrightarrow{P}a {Yn}aYnP a

3.1.2 性质

若 X n → P a , Y n → b , 且 g ( x , y ) 在 ( a , b ) 处 连 续 , 则 g ( X n , Y n ) → P g ( a , b ) 若X_n\xrightarrow{P}a,Y_n\xrightarrow{b},且g(x,y)在(a,b)处连续,则g(X_n,Y_n)\xrightarrow{P}g(a,b) XnP a,Ynb g(x,y)(a,b)g(Xn,Yn)P g(a,b)

3.2 大数定理
3.2.1 定理一:切比雪夫定理的特殊情况

设 随 机 变 量 序 列 X 1 , X 2 , . . . , X n , . . . 相 互 独 立 , 且 具 有 相 同 的 数 学 期 望 和 相 同 的 方 差 σ 2 , 作 前 n 个 随 机 变 量 的 算 术 平 均 : 设随机变量序列X_1,X_2,...,X_n,...相互独立,且具有相同的数学期望和相同的方差\sigma^2,作前n个随机变量的算术平均: X1,X2,...,Xn,...σ2n
1 n ∑ k = 1 n X k = X ‾ {1\over n}\sum_{k=1}^nX_k=\overline{X} n1k=1nXk=X
则 ∀ ε > 0 , 有 : 则\forall \varepsilon>0,有: ε>0
l i m n → ∞ P { ∣ X ‾ − μ ∣ < ε } = l i m n → ∞ P { ∣ 1 n ∑ k = 1 n − μ ∣ < ε } = 1 lim_{n\to\infty}P\{|\overline{X}-\mu|<\varepsilon\}=lim_{n\to\infty}P\{|{1\over n}\sum_{k=1}^n-\mu|<\varepsilon\}=1 limnP{Xμ<ε}=limnP{n1k=1nμ<ε}=1

证明:
由于:
E ( X ‾ ) = E ( 1 n ∑ k = 1 n X k ) = 1 n ⋅ n μ = μ E(\overline{X})=E({1\over n}\sum_{k=1}^nX_k)={1\over n}\centerdot n\mu=\mu E(X)=E(n1k=1nXk)=n1nμ=μ
D ( X ‾ ) = D ( 1 n ∑ k = 1 n X k ) = 1 n 2 ∑ k = 1 n D ( X k ) = 1 n 2 ⋅ n σ 2 = σ 2 n D(\overline{X})=D({1\over n}\sum_{k=1}^nX_k)={1\over n^2}\sum_{k=1}^nD(X_k)={1\over n^2}\centerdot n\sigma^2={\sigma^2\over n} D(X)=D(n1k=1nXk)=n21k=1nD(Xk)=n21nσ2=nσ2
由切比雪夫不等式得:
P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } ≥ 1 − σ 2 / n ε 2    ⟹    l i m n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 P\{|{1\over n}\sum_{k=1}^nX_k-\mu|<\varepsilon\}\ge1-{\sigma^2/n\over\varepsilon^2}\implies lim_{n\to\infty}P\{|{1\over n}\sum_{k=1}^nX_k-\mu|<\varepsilon\}=1 P{n1k=1nXkμ<ε}1ε2σ2/nlimnP{n1k=1nXkμ<ε}=1

3.2.2 定理二:伯努利大数定理

设 事 件 A 在 每 次 试 验 中 发 生 的 概 率 为 p , 记 n A 为 n 次 独 立 重 复 试 验 中 A 发 生 的 次 数 , 则 ∀ ε > 0 , 有 : 设事件A在每次试验中发生的概率为p,记n_A为n次独立重复试验中A发生的次数,则\forall\varepsilon>0,有: ApnAnAε>0
l i m n → + ∞ P { ∣ n A n − P ∣ < ε } = 1 lim_{n\to+\infty}P\{|{n_A\over n}-P|<\varepsilon\}=1 limn+P{nnAP<ε}=1

证明:
∵ n A ∽ B ( n , p ) , E ( n A n ) = 1 n ⋅ n p = p , D ( n A n ) = 1 n 2 D ( n A ) = 1 n 2 ⋅ n p q = p q n \because n_A\backsim B(n,p),E({n_A\over n})={1\over n}\centerdot np=p, D({n_A\over n})={1\over n^2}D(n_A)={1\over n^2}\centerdot npq={pq\over n} nAB(n,p),E(nnA)=n1np=p,D(nnA)=n21D(nA)=n21npq=npq
利用切比雪夫不等式可得:
∀ ε > 0 , 有 P { ∣ n A n − p ∣ < ε } ≥ 1 − p q n ε 2 \forall\varepsilon>0,有P\{|{n_A\over n}-p|<\varepsilon\}\ge1-{pq\over n\varepsilon^2} ε>0P{nnAp<ε}1nε2pq
即得:
l i m n → + ∞ P { ∣ n A n − p ∣ < ε } = 1 lim_{n\to+\infty}P\{|{n_A\over n}-p|<\varepsilon\}=1 limn+P{nnAp<ε}=1

https://wenku.baidu.com/view/2b88b411cc7931b765ce15f4.html?sxts=1591850252432

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值