专利 | 一种基于脑电神经反馈控制智能机器人的方法

在这里插入图片描述

Hello,
大家好,这里是壹脑云,我是Ting Zhang~
今天和大家一起学习的是“一种基于脑电神经反馈控制智能机器人的方法”这个专利。它是由昆明理工大学的伏云发等人发明的专利。
这个发明涉及基于脑电神经反馈控制智能机器人的方法,属脑科学领域。本发明包括计算机、路由系统、机器人测试平台和脑电采集系统。
我们将从背景技术、发明内容、有益效果三个方面来解读,一起来学习吧~
在这里插入图片描述

背景技术

脑机接口/脑机交互(Brain-computer/machineinteraction, BCI/BMI) 是绕过大脑外周神经和肌肉的参与,由脑信号实现大脑与外部设备直接的通信和控制。

其在机器人控制领域的一个重要应用是脑控机器人(Brain-controlledrobot,BCR)技术,即用感知、思维意图控制机器人的研究。该研究是脑科学、信息科学与控制科学交叉跨学科研究,目前已成为国际重大前沿突破点。

这一技术不仅可望战略性地用于国防军事目的,也可望为严重运动残疾患者提供一种新的通信和控制通道,从而改善他们的生活质量;更可望在特殊情况下为健康用户提供脑控机器人或外部设备,也提高他们生活的质量。

在这里插入图片描述
图片来自:图虫创意

基于运动想象的脑机交互

传统的脑控机器人研究主要实现对机器人简单的方向控制,难于实现对其速度的控制。但在实际应用中,需要实现对其方向的灵活控制,也需要实现对其速度的灵活控制,这些需求提出了一个很大的挑战。

已有基于运动想象(Motor imagery,MI) 脑电的脑机交互范式多数是简单的运动想象模式,仅提供小的指令集,难于满足机器人灵活运动对多个方向和多级速度的控制需求;而复杂运动想象模式的脑功能机制及其信号特征尚没有得到充分的研究,因此对复杂运动想象模式的识别精度低,目前也难于提供大指令集。

此外,实用的脑控机器人系统应满足大多数用户需要较少的或不需要训练就能够实现操控。然而,基于运动想象模式的脑机交互性能在被试内(同一被试运动想象的能力和其状态随时间而变化)和被试间(不同个体运动想象的能力)的变异性较大,研究表明存在严重的BCI盲问题。

基于P300 的脑机交互

除了上述基于运动想象的脑机交互外,基于P300 的脑机交互虽然其识别目标数可以超过30个,但是为保证识别精度需要至少2个重复次数,难于做到单次识别,脑控机器人运动的实时性会受到限制。

基于SSVEP的脑机交互

相比上述两种范式,基于SSVEP的脑机交互不仅可识别的目标数多(可超过40个),能够提供大指令集(即可提供更多精细的运动控制指令),以满足脑控机器人灵活运动对方向和速度的分级控制;而且该类脑机交互需要被试较少的适应性训练。

为此,本研究拟采用基于SSVEP 的脑机交互方法直接脑控机器人的方向和速度,比较普遍适用于字符输入的该范式,为有效用于脑控机器人接口,将根据机器人灵活运动对方向和速度的要求,优化此范式的设计及控制策略,恰当设置SSVEP刺激目标数及其布局;然后结合优化的刺激范式,采用适用于SSVEP解码的典型相关分析(Canonicalcorrelation analysis, CCA)方法。此外,为克服SSVEP 存在的局限,本文也对SSVEP与MI相结合脑控机器人方向和速度进行了初步的研究。

本发明可望为基于SSVEP 或与MI混合的脑机交互用于脑控机器人复杂灵活运动的研究和应用提供启发,并为推动直接脑控机器人技术走向实际应用打下一定的基础。

在这里插入图片描述
发明内容
本发明要解决的技术问题是:本发明提供一种基于脑电神经反馈控制智能机器人的方法,以用于通过该方法实现同时对机器人多个运动方向和多级速度的控制。

本发明技术方案是:一种基于脑电神经反馈控制智能机器人的方法,包括计算机①、路由系统②、机器人测试平台③和脑电采集系统④,用于实现对机器人运动方向和速度的分级控制。

在这里插入图片描述

对于同时脑控机器人的运动方向和速度以及对机器人多个运动方向和多级速度的控制:首先,计算机①启动脑机接口客户端程序,屏幕呈现SSVEP刺激范式,机器人测试平台③连入脑机接口客户端并开始计时,完成准备工作;

接下来,被试者观察机器人测试平台③屏幕上的机器人和障碍并规划机器人运动路径,然后注视计算机①屏幕上与期望运动方向和速度相对应的刺激目标,脑电采集系统④中的无线脑电放大器将采集到的脑电信号(模拟信号)转换成数字信号经路由路由系统②同步(时间精度小于1毫秒)发送至计算机①,计算机①分析接收到的脑电信号并识别,计算机①将识别的刺激目标转换为与之对应的控制指令经路由系统②发送至机器人测试平台③;

最后,被试者继续观察机器人运动路径,并根据机器人的运动状态、位置以及周边的障碍,规划下一步运动路径和控制策略,然后再次注视计算机①屏幕上与期望运动方向和速度相对应的刺激目标对机器人运动方向和速度进行控制,如此反复,最终使机器人到达目标位置;从而实现对机器人运动方向和速度的分级控制。

进一步地,所述计算机①能够同时脑控机器人方向和速度;计算机①采用稳态视觉诱发电位(SSVEP)脑机交互方法,为脑控机器人运动规划了向左、向右、前进和后退4个方向,设计了低速、中速和高速3级运动速度并组合了9个脑控指令,9个脑控指令分别为"低速前进"、“中速前进”、“高速前进”、“低速后退”、“中速后退”、“低速左转”、“中速左转”、“低速右转”、“中速右转”;计算机①采用典型相关分析(CCA)进行识别;机器人测试平台③的测试步骤为:从起点出发,绕过障碍物,最终到达终点;计算机①和机器人测试平台③为同步工作方式。

进一步地,所述脑电采集系统④共采集32通道的脑电信号,采样频率为250 Hz, 记录电极为Pz、P3、P4、PO3、PO4、PO7、O1、Oz、O2、PO8以及参考电极Cz, 接地电极为FPz,电极阻抗在5 k欧姆以下;机器人测试平台③与BCI系统之间通信采用客户端/服务器结构;机器人测试平台③为服务器端,计算机①为客户端,机器人测试平台③和计算机①通过TCP/IP进行连接。

进一步地,所述计算机①上的SSVEP脑机交互范式利用Matlab的Psychtoolbox(PTB)工具箱实现;液晶显示器的刷新率为60帧/秒,分辨率为1366x768 (像素);刺激目标由大小为150x150 (像素)的9个方块组成;每个刺激目标由特定频率调制,刺激目标从左至右,从上至下的闪烁频率分别为[8 12 9 13 9.5 10 14 10.5 15] Hz;开始时,刺激界面首先静止呈现3秒,3秒后9个刺激目标分别以上述频率闪烁;计算机①上转换后的控制指令由13个字符组成;机器人测试平台③自动记录用时以及触碰障碍物次数;每碰撞一次障碍物惩罚5秒;所述基于脑电神经反馈控制智能机器人的方法的所有代码均通过VC++编程实现。

进一步地,所述计算机①上共有三种不同的刺激范式;三种刺激范式的差别在于刺激目标之间的间隔,其中,范式一刺激目标之间的水平和垂直间距均为10;范式二刺激目标之间的水平和垂直间距均为100;范式三刺激目标之间水平间距为428,垂直间距为198;三种范式刺激呈现时间均设置为3秒,,视觉转移时间(即间隔时间)设置为1.5秒。

在这里插入图片描述
有益效果
本发明的有益效果是:本发明不仅提供了同时脑控机器人的方向和速度,同时提供了对机器人多个运动方向和多级速度的控制。

本次的分享就到这里了,欢迎关注,我们一起学习人工智能方面的其他专利吧~
参考资料:
[1]伏云发, 周洲洲, 李朝阳, 王文乐, 陈睿, 李玉, 熊馨. 一种基于脑电神经反馈控制智能机器人的方法: 中国,CN111007725A. 2020-04-14.

  • END -

编辑 | Ting Zhang
校对|喵君姐姐

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

壹脑云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值