Datawhale 零基础⼊入⻔门CV-Task4 模型训练和验证

测试集的数据来选择模型和评估检测的,但是这是一个不公平的过程,因为我们用来进行模型选择和评估的数据是一组相同的数据,拟合的情况肯定很好,但是对于那些没有出现在测试集中的数据没有泛化作用。

所以这里我们进一步改进,我们将数据分为:训练集、验证集和测试机。

验证集用来选择模型,测试集用来评估假设。


显然越高次数的多项式模型越能够适应我们的训练数据集,但是适应训练数据集并不代表着能推广至一般情况。我们应该选择一个更能适应一般情况的模型。如果在模型选择过程中不断重复使用相同的测试数据,这样的话测试数据就变成了训练数据的一部分,模型更容易陷入过拟合。
于是我们将数据集分为训练集,验证集和测试集。训练数据集用于不同模型的拟合,模型在验证集上的性能表现作为模型选择的标准,测试集作为最终的性能评估。使用 60%的数据作为训练集, 使用 20%的数据作为交叉验证集, 使用 20%的数据
作为测试集.

构建训练集和验证集

train_loader = torch.utils.data.DataLoader(
    train_dataset,
    batch_size=10, 
    shuffle=False, 
    num_workers=0, 
)
    
val_loader = torch.utils.data.DataLoader(
    val_dataset,
    batch_size=10, 
    shuffle=False, 
    num_workers=0, 
)

训练和验证,根据最优验证集精度保存模型

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(1):
    print('Epoch: ', epoch)

    train(train_loader, model, criterion, optimizer, epoch)
    val_loss = validate(val_loader, model, criterion)
    
    # 记录下验证集精度
    if val_loss < best_loss:
        best_loss = val_loss
        torch.save(model.state_dict(), './model.pt')
其中每个Epoch的训练代码如下:

def train(train_loader, model, criterion, optimizer, epoch):
    # 切换模型为训练模式
    model.train()

    for i, (input, target) in enumerate(train_loader):
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

其中每个Epoch的验证代码如下:

def validate(val_loader, model, criterion):
    # 切换模型为预测模型
    model.eval()
    val_loss = []

    # 不记录模型梯度信息
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            c0, c1, c2, c3, c4, c5 = model(data[0])
            loss = criterion(c0, data[1][:, 0]) + \
                    criterion(c1, data[1][:, 1]) + \
                    criterion(c2, data[1][:, 2]) + \
                    criterion(c3, data[1][:, 3]) + \
                    criterion(c4, data[1][:, 4]) + \
                    criterion(c5, data[1][:, 5])
            loss /= 6
            val_loss.append(loss.item())
    return np.mean(val_loss)
 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值