Yolov8入门篇:环境安装和使用

引言

YOLOv8 项目Git地址:https://github.com/ultralytics/

YOLO(你只看一次),一个流行的目标检测图象分割法模型是由华盛顿大学的约瑟夫·雷德蒙和阿里·法尔哈迪开发的。YOLO于2015年推出,因其高速度和准确性而迅速走红。

  • 2016 年发布的YOLOv2通过纳入批量归一化、锚框和维度集群改进了原始模型。
  • 2018 年推出的YOLOv3使用更高效的骨干网络、多锚和空间金字塔池进一步增强了模型的性能。
  • YOLOv4于2020年发布,引入了像马赛克这样的创新数据扩充、新的无锚探测头和新的损失函数.
  • YOLOv5进一步提高了模型的性能,并增加了超参数优化、集成实验跟踪和自动导出为常用导出格式等新功能。
  • YOLOv6于 2022 年由美团开源,目前已用于该公司的许多自主配送机器人。
  • YOLOv7增加了额外的任务,如椰子树关键点数据集的姿势估计。
  • YOLOv8由Ultralytics于2023年发布。YOLOv8引入了新的功能和改进,以增强性能、灵活性和效率,支持全方位的视觉人工智能任务,
  • YOLOv9引入了可编程梯度信息(PGI)和广义高效层聚合网络(格兰)等创新方法。
  • YOLOv10是由清华大学的研究人员使用该软件包创建的。超lytics计算机编程语言软件包创建的。该版本通过引入端到端头(端到端头),消除了非最大抑制(NMS)要求,实现了实时目标检测的进步。
  • YOLO11🚀新的:Ultralytics的最新YOLO型号可在多项任务中提供一流的(SOTA)性能,包括侦查分割姿态估计跟踪,以及分类,利用不同人工智能应用和领域的能力。

什么是Ultralytics,它如何改进物体检测?

Ultralytics YOLO是广受好评的YOLO(你只看一次)系列的最新进展,用于实时对象检测和图像分割。它建立在以前版本的基础上,引入了新的功能和改进,增强了性能、灵活性和效率。YOLO支持各种视觉人工智能任务例如检测、分割、姿态估计、跟踪和分类。其最先进的架构确保了卓越的速度和准确性,使其适合各种应用,包括边缘设备和云API。

准备环境

Anaconda下载

Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。 因为包含了大量的科学包,Anaconda 的下载文件比较大(约 531 MB),如果只需要某些包,或者需要节省带宽或存储空间,也可以使用Miniconda这个较小的发行版(仅包含conda和 Python)。
Conda是一个开源的包、环境管理器,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换Anaconda包括Conda、Python以及一大堆安装好的工具包,比如:numpy、pandas等Miniconda包括Conda、Python。

创建yolov8虚拟环境

 创建新的虚拟环境yolov8

conda create -n yolov8 python=3.8

激活yolov8环境

conda activate yolov8

yolov8模型下载

clone模型

可以直接下载zip压缩文件,或者安装Git输入以下命令克隆ultralytics项目 

git clone https://github.com/ultralytics/ultralytics.git
下载完了之后目录如下: 

pycharm配置

  • 解释器配置:将下载下来的ultralytics文件夹使用pycharm打开,进入文件 —> 设置界面,找到解释器选项。选择你希望使用的 Anaconda 环境作为解释器,并进行配置。 点击添加本地解释器—>现有—>yolov8虚拟环境下的python.exe。

  • 终端配置 :打开Anaconda Prompt所在文件,右键属性查看目标位置,复制cmd.exe以及后面的内容。同样地,文件—>设置—>工具—>终端,将以上复制的路径填入shell路径。

安装必要库 

在pycharm终端输入pip安装命令等待安装完成。

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install yolo -i https://pypi.tuna.tsinghua.edu.cn/simple


下载训练模型

在GitHub项目仓,README往下翻可以看见预测、分类、分割等模型,点击即可下载。
https://github.com/ultralytics/ultralytics

自行下载

https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt
https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt

环境验证

在终端输入以下命令进行预测,打开runs/detect/predict查看预测结果

yolo predict model=./model/yolov8n.pt source='https://ultralytics.com/images/bus.jpg'

可以看到yolov8的效果是非常棒的,除了person以及bus,甚至连stop sign都检测出来了。

参考官方快速使用文件:

https://docs.ultralytics.com/quickstart/#use-ultralytics-with-cli

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LCS-312

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值