互联网情感分析(nlp文本分类任务)

传统方法中,这次主要考虑OOP,但是可能代码写的有些鬼畜,这些还是需要慢慢体会,如何通过OOP更好提高可维护性等问题。

  • 突然发现我这样写并不好,不方便用pipeline把特征工程和模型的参数一起搜参。。。
  • 所以第一次写还是可以基于过程来写,然后改成OOP,感觉自己上来设计OO还是hold不住

10.19目前分了4部分

  • PreProcess 预处理
  • MyModel 特征工程+ML模型
  • Evaluate 进行模型评估
  • main

四部分分别如下:

from MyModel import Model
from time import time
import numpy as np
from sklearn import metrics
from sklearn.model_selection import cross_val_score, KFold
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV


class Evaluator(Model):
    def __init__(self, X, y):
        super(Evaluator, self).__init__(X, y)  # super会查找所有的超类,以及超类的超类

    # def __getitem__(self, item):
    #     pass

    def cross_val(self, clf):
        Kfold = KFold(n_splits=5, shuffle=True, random_state=1)  # shuffle作用:使每一折各类别的比例与总数据集相同
        scores =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值