CDA Level 1 数据分析师:7. 业务分析报告与数据可视化报表

CDA Level 1 数据分析师:7. 业务分析报告与数据可视化报表

1. 业务图标决策树
1. 四类划分:
    1. 比较类图标(作比较,目标比,同环比)
    2. 序列图表(折线图、面积图、柱状图、漏斗图):时间序列、阶段的递进的序列
    3. 构成图表(饼图、堆积图、百分比图、瀑布图):占比
    4. 描述性图表(直方图、散点图、关系图):描述关系

2. 比较图1:油量表
    比较图2:柱状图、条形图
    比较图3:雷达图
    比较图4:树状图
    比较图5:地理图
3. 序列图1:折线、面积、柱状图
    序列图2:漏斗图
4. 构成图1:饼图、环形图、南丁格尔玫瑰图
    构成图2:堆积图、百分比堆积图
    构成图3:瀑布图
5. 描述图1:直方图
    描述图2:散点图、气泡图
2. 业务分析报告
1. 业务分析报告的作用
    1. 定义:时间段内综合性事件评估
    2. 作用:了解该事件段内的业务事实表现
    3. 静态报告:word  pdf ppt
    4. 可视化看板:交互式可视化
    5. 分类:
        1. 工作周期报告
        2. 人口普查报告
        3. 活动评估报告
        4. 用户留存分析报告
        5. 生意机会报告
        6. 库存健康报告
        7. 绩效评估报告
2. 业务分析报告的撰写流程
    1. 业务理解:抓住问题核心,定位决策者,设定报表框架
    2. 数据收集:系统数据采集,人工维护数据,外部数据支持
    3. 数据处理:字段标准统一,多表数据关联,异常数据整理
    4. 数据分析:数据探索,运用分析方法论,结合高效工具
    5. 图表制作:选择合适图表,准备图表数据,调整图表细节,撰写图表结论
    6. 报告绘制:组合图表,撰写报告结论
3. 业务分析报告的设计
    1. 业务理解:
        1. 报告类型:日常通报,周期回顾(周期末评估),专题通报(临时性)
        2. 阅读者:来自哪个部门在,关注重点,报告场景
        3. 报告方向:报告应用场景,目的,倾向性
        
        
        4. 日常通报型:短周期,高频,核心数据报表。一般没有太多图形
            适用:数据传输及时性,网速测试,内存饱和度
        5. 周期回顾型:长周期,低频,综合性报表
            适用:年度经营总结,个人季度工作报告,财务年度报表
            已设定目标:依据该目标🎯再分:目标是否完成进行分类。达成进行达成原因分析和下一周期目标。未达成目标要总结原因,定位源头
            未设定目标:1. 核心指标差异变化率  2. 搭建主要分析框架
        6. 专题回顾型:低频,专项关注点数据表
             适用:活动评估报告,渠道用户表现报告,库存亚健康分析
             步骤:明确背景,找重点,量化重点,拆解重点
    
4. 业务分析报告注意点
    1. 条理清晰,注意报告完整
    2. 论点明确,有论必有数据,有数必好懂
    3. 图,表,文结合
    4. 名称术语要一致,未知名词标注解释
    5. 减少不必要的主观推测,同时注意语气尽量避免生硬
    6. 切勿为了投其所好弄虚作假
    
    常用句式:通过/基于分析(数据事实),发现(业务强弱),考虑(也许原因),建议(改进方案)
3. 创建可视化报表
1. 可视化报表与业务分析报告的差异
    业务分析报告是文本和表格,可视化报表都是图带有筛选器
    业务分析报告:是表格数据,在一个工作表内进行数据处理,一个业务点论述有起始高潮总结,静态报告,被动获取信息,包括合理建议,Work或Ppt
    可视化报表:表数据,多数据源,业务面,动态仪表盘,主动获取信息,不提供建议,BI
2. 可视化报表的创建过程
    步骤:
    1. 业务理解
        1. 第一步也是最重要一步,做到全面、准确、深入理解业务问题
        2. 方法:
            1. 与业务人员或决策者多次深入访谈(制定计划、明确问题、主题、时间、地点)
            2. 实际业工作中学习
            3. 查阅相关业务资料
    2. 整体设计
        1. 整体设计连接业务需求与可视化报表成果之间的桥梁
        2. 方法:
            1. 可视化报表作用
            2. 思维路径:明确业务需求、明确服务对象、明确业务流程和行为、围绕可落地的数据建议进行设计
            3. 设计思路
    3. 数据收集
       5W2H思维模型、ETL
    4. 数据加工整理
       ETL、DW
    5. 搭建多维数据环境
       OLAP
    6. 创建复杂的汇总规则
       OLAP
    7. 数据展现
        准确、全面、直观展现数据信息,做到一目了然、过目不忘
        1. 图标和表格结合
        2. 活用四类可视化方法
        3. 简洁易懂
        4. 围绕一个主题展开
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只小Demo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值