1. CLIP-ReIdent: Contrastive Training for Player Re-Identification 论文解析–2023的论文,貌似顶会
论文方法是类不可知的,微调CLIP vitl/14模型,在MMSports 2022球员重新识别挑战中实现98.44%的mAP。此外,CLIP Vision Transformers 拥有强大的OCR能力,可以在对没有数据集进行任何微调的情况下,以zero-shot manner without any fine-tuning on the dataset。通过应用score-scam算法,可以可视化最重要的图像区域。计算两张球员图片相似性得分时识别这些区域。
原来的RID存在的问题:侧重于多视图依赖特征,衣服变化和野外识别和球员的rid识别有很大不同。
基于player tracking 和 reidentification的运动分析来分项一个运动员的性能。
球员识别和行人识别的区别:1.同质化背景,篮球场、冰球场标准化场地。2.穿戴相同。
因此,号码、鞋、脸很重要。
困难点:图像低分辨率可能动态模糊。面部识别有用,但比较困难。背部号码好使。OCR已经很准了。
两个创新点:
1.定制了单模态类无关的重识别和检索CLIP目标
2.zero-shot能力和论文方法的区域重要特征
其它方法的问题:
- 仅限于预定义的类,需要团队标志服来追踪球员的身份。
- Siamese net work with triplet loss 无监督学习 来分开彼此
- 半交互,少了标注, transformer-ba