线性代数复习

线性代数不同专业对这门知识掌握的要求。
在这里插入图片描述
参考视频教程:
实用大众线性代数-西安电子科技大学
参考书籍:
工程数学-线性代数(同济大学)
实用大众线性代数(陈怀琛)
线性代数(David Poole)

第一章:行列式

概念

二阶行列式的定义:主对角线元素的乘积与副对角线元素的乘积的差;
全排列:n个不同的元素排成一列;
逆序数:单按某一规定进行了一组数的排列后,当某两个数的先后次序与标准数不同时,则逆序数为1,所有逆序数的和为排列的逆序数。
写法:det(Aij)
行列式按行展开,按列展开:涉及代数余子式;
一个n阶行列式,如果其中第i行所有元素除ij之外都为零,那么该行列式等于Aij与他的代数余子式的乘积;
行列式等于其任一一行或任一一列的各元素与其对应的代数余子式乘积之和;

重点难点

  1. 利用行列式计算线性方程组;
  2. 三阶行列式的计算:主元为正号,辅元为负号;
  3. 奇排列、偶排列;
  4. 不要和绝对值符号混淆;
  5. 性质:
    行列式与转置的行列式相等;
    互换行列式的两行或两列,行列式变号;
    若行列式有两行或两列完全相等,则行列式等于0;
    行列式的某一行中所有元素乘k相当于用k乘以该行列式;
    行列式的某两行或两列成比例,则行列式等于0;
    把行列式中的某一行的各元素乘一个数k然后加到另一行,行列式不变;
    行列式的某一行的元素都是两个数的和,则该行列式等于对应的两个行列式的和;
  6. 余子式:在n阶行列式中,去除Aij所在行列对应的元素后,生下来的n-1阶行列式叫做Aij的余子式;
  7. 代数余子式:余子式乘以   ( − 1 ) i + j \ (-1)^{i+j}  (1)i+j
  8. **克拉默法则:**如果线性方程组的系数行列式不等于零,则方程组有唯一解。x1=D1/D; Xn=Dn/D;
  9. 如果线性方程组的系数行列式D不等于0,则一定有解,而且解唯一;
    10.如果线性方程组无解或有两个不同的解,则系数行列式必为零;

重点公式

n阶行列式的计算公式:
Σ ( − 1 ) t a 1 p 1 a 2 p 2 . . . a n p n \varSigma \left( -1 \right) ^ta_{1p_1}a_{2p_2}...a_{np_n} Σ(1)ta1p1a2p2...anpn
代数余子式:余子式乘以   ( − 1 ) i + j \ (-1)^{i+j}  (1)i+j

第二章:矩阵及其运算

概念

矩阵的定义:由mxn各数排成的m行n列的数表。元素是实数的称为实矩阵,元素是复数的称为复矩阵;
方阵:行数和列数相等的矩阵;
行矩阵:只有一行的矩阵;
列矩阵:只有一列的矩阵;
矩阵相等:两个矩阵的行数,列数相等,而且各元素也相等;
零矩阵:元素都是0的矩阵;
n阶单位矩阵:即对角元素都是1,其他元素都是0的n维方阵;

重点难点

线性变换和矩阵之间存在一一对应关系;因此可以用矩阵来研究线性变换,如向量的变换;也可以利用线性变换来解释矩阵。
[ 1 0 0 0 ] 为投影变换 \left[ \begin{matrix} 1& 0\\ 0& 0\\ \end{matrix} \right] \text{为投影变换} [1000]为投影变换
矩阵是研究线性变换的工具;
矩阵的乘法不满足交换率;
对称矩阵:如矩阵与其转置相等,则该矩阵称为对称矩阵;
伴随矩阵:
在这里插入图片描述
逆矩阵:
对于n阶矩阵A,如果有一个n阶矩阵B,使得AB=BA=E,则说明矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。若A可逆,则A的逆矩阵唯一。
若A可逆,则A的行列式不等于0。
当|A|=0,则A称为奇异矩阵,否则称为非奇异矩阵。A是可逆矩阵的充分必要条件是A的行列式不为0,即可逆矩阵就是非奇异矩阵。
若AB=E,则:
B − 1 = A B^{-1}=A B1=A

重点公式

矩阵运算:
加法运算:同型矩阵才可以叠加,加法满足交换律,矩阵的加法是对应元素相加;
矩阵数乘:一个数与矩阵相乘,等于这个数乘以矩阵的每一个元素;
矩阵与矩阵相乘:
AB的元素Cij计算公式如下:
c i j = a i 1 b 1 j + a i 2 b 2 j + . . . + a i s b s j = ∑ k = 1 s a i k b k j c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+...+a_{is}b_{sj}=\sum_{k=1}^s{a_{ik}b_{kj}} cij=ai1b1j+ai2b2j+...+aisbsj=k=1saikbkj
矩阵的乘法满足分配律和结合律;
n维方阵与单位矩阵相乘满足交换律,而且等于自身;
( A B ) k ≠ A k B k \left( \boldsymbol{AB} \right) ^k\ne \boldsymbol{A}^k\boldsymbol{B}^k (AB)k=AkBk
矩阵的转置;转置的性质:
( A T ) T = A ( A + B ) T = A T + B T ( A B ) T = B T A T ( λ A ) T = λ A T \left( A^T \right) ^T=A \\ \left( A+B \right) ^T=A^T+B^T \\ \left( AB \right) ^T=B^TA^T \\ \left( \lambda A \right) ^T=\lambda A^T (AT)T=A(A+B)T=AT+BT(AB)T=BTAT(λA)T=λAT
方阵的性质:
∣ λ A ∣ = λ n ∣ A ∣ \left| \lambda A \right|=\lambda ^n\left| A \right| λA=λnA
矩阵乘积的行列式:
∣ A B ∣ = ∣ A ∣ ∣ B ∣ \left| AB \right|=\left| A \right|\left| B \right| AB=AB
证明方式:AB矩阵的组合矩阵化为下三角行列式,下三角行列式的值维对角线元素的乘积。
伴随矩阵相关性质:
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=\left| A \right|E AA=AA=AE
逆矩阵的计算公式:
A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac{A^*}{\left| A \right|} A1=AA
逆矩阵的性质:
( A B ) − 1 = B − 1 A − 1 证明方法(乘积为单位阵) ( λ A ) − 1 = 1 λ A − 1 \left( AB \right) ^{-1}=B^{-1}A^{-1} 证明方法(乘积为单位阵)\\ \left( \lambda A \right) ^{-1}=\frac{1}{\lambda}A^{-1} (AB)1=B1A1证明方法(乘积为单位阵)(λA)1=λ1A1
矩阵转置的逆等于逆的转置:
( A T ) − 1 = ( A − 1 ) T \left( A^T \right) ^{-1}=\left( A^{-1} \right) ^T (AT)1=(A1)T
注意:
A 0 = E A − k = ( A − 1 ) k A^0=E \\ A^{-k}=\left( A^{-1} \right) ^k A0=EAk=(A1)k
二阶逆矩阵的计算:
A − 1 = A ∗ ∣ A ∣ = ∣ d − b − c a ∣ a d − b c A^{-1}=\frac{A^*}{\left| A \right|}=\frac{\left| \begin{matrix} d& -b\\ -c& a\\ \end{matrix} \right|}{ad-bc} A1=AA=adbc dcba
计算逆矩阵需要先计算伴随矩阵,计算伴随矩阵需要先计算代数余子式。
分块矩阵的乘法和矩阵与矩阵的乘法是类似的。
设A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都是零矩阵,且在对角线上的子块都是方阵:
A = [ A 1 0 0 0 ⋱ 0 0 0 A n ] \boldsymbol{A}=\left[ \begin{matrix} \boldsymbol{A}_1& 0& 0\\ 0& \ddots& 0\\ 0& 0& \boldsymbol{A}_{\boldsymbol{n}}\\ \end{matrix} \right] A= A1000000An
那么称A为分块对角矩阵。
分块对角矩阵的行列式具有下述性质:
∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A n ∣ \left| \boldsymbol{A} \right|=\left| \boldsymbol{A}_1 \right|\left| \boldsymbol{A}_2 \right|...\left| \boldsymbol{A}_{\boldsymbol{n}} \right| A=A1A2...An
A − 1 = [ A 1 − 1 0 0 0 ⋱ 0 0 0 A n − 1 ] \boldsymbol{A}^{-1}=\left[ \begin{matrix} \boldsymbol{A}_{1}^{-1}& 0& 0\\ 0& \ddots& 0\\ 0& 0& \boldsymbol{A}_{\boldsymbol{n}}^{-1}\\ \end{matrix} \right] A1= A11000000An1

矩阵的微分和积分

如果矩阵A(t)的每一个元素是变量t的可微函数,则称A(t)可微。其导数定义为:
A ′ ( t ) = d d t A ( t ) = ( d d t a i j ( t ) ) m × n A^{'}\left( t \right) =\frac{d}{dt}A\left( t \right) =\left( \frac{d}{dt}a_{ij}\left( t \right) \right) _{m\times n} A(t)=dtdA(t)=(dtdaij(t))m×n
如果矩阵A的每一个元素都是区间 [ t 0 , t 1 ] \left[ t_0,t_1 \right] [t0,t1]上的可积函数,则定义A(t)在该区间上的积分为: ∫ t 0 t 1 A ( t ) d t = ( ∫ t 0 t 1 a i j ( t ) d t ) m × n \int\limits_{t_0}^{t_1}{A\left( t \right) dt}=\left( \int\limits_{t_0}^{t_1}{a_{ij}\left( t \right) dt} \right) _{m\times n} t0t1A(t)dt= t0t1aij(t)dt m×n

第三章:矩阵的初等变换与线性方程组

概念

矩阵的初等变换,主要讨论矩阵的秩的概念,矩阵的秩将决定线性方程组的求解问题。本质是实现线性方程组的求解计算。
矩阵的初等变换可以等价为对矩阵的变换;
行阶梯矩阵:可以画出一条阶梯线,线的下方全是0,每个台阶只有一行。台阶数即是非零行的行数。
行最简矩阵:阶梯的非零行的第一个非零元是1,而这些非零元所在的列的其他元素都是0;
标准型:对行行嘴贱矩阵可以转化为一种更简单的形式,该标准型的左上角为一个单位矩阵。
矩阵对称的充分必要条件:
A~B(行对称矩阵)的充分必要条件是存在m阶可逆矩阵P.使得PA=B;
A~B(列对称矩阵)的充分必要条件是存在n阶可逆矩阵Q.使得AQ=B;
线性方程组的解:

  1. 无解的充分必要条件式R(A)<R(A,b);
  2. 有唯一解的充要条件是:R(A)=R(A,b);
  3. 有无穷多解的充要条件是:R(A)=R(A,b)<n;

重点难点

矩阵的秩的定义方法:
5. 首先引入子式的概念,即在一个mxn矩阵中,任取k行与k列,位于这个行列交叉处的kXk的元素,不改变其在原始矩阵的相对位置,而得到的k阶行列式称为矩阵的k阶子式;
6. 设在矩阵A中有一个不等于0的r阶子式D,而且所有的r+1阶子式全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩。记为:R(A)。规定零矩阵的秩等于0.
7. 等价矩阵的秩相同;

重点公式

R ( A T ) = R ( A ) R\left( A^T \right) =R\left( A \right) R(AT)=R(A)

第四章:向量组的线性相关性

概念

当向量维数小于3时,存在明确的几何形象。当n>3后,只存在几何术语,不存在几何形象。
n维向量空间的表示: R n \mathbb{R} ^n Rn
含有有限个向量的有序向量组可以和矩阵一一对应;
给定一个向量组 A : a 1 , a 2 , . . . a n A\text{:}a_1,a_2,...a_n Aa1,a2,...an,对于任何一组实数 k 1 , k 2 , . . . k n k_1,k_2,...k_n k1,k2,...kn,表达式: k 1 a 1 + k 2 a 2 + . . . + k n a n k_1a_1+k_2a_2+...+k_na_n k1a1+k2a2+...+knan,称为向量组A的一个线性组合 k 1 , k 2 , . . . k n k_1,k_2,...k_n k1,k2,...kn称为这个线性组合的系数。
b = k 1 a 1 + k 2 a 2 + . . . + k n a n \boldsymbol{b}=k_1a_1+k_2a_2+...+k_na_n b=k1a1+k2a2+...+knan,则称b是向量组A的线性组合。向量b能由向量组线性表示,则表明方程组: k 1 a 1 + k 2 a 2 + . . . + k n a n = b k_1a_1+k_2a_2+...+k_na_n=\boldsymbol{b} k1a1+k2a2+...+knan=b有解。
线性相关:给定向量组A: a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an,如果存在不全为零的数 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km,使: k 1 a 1 + k 2 a 2 + . . . + k n a n = 0 k_1 a_1+ k_2 a_2 +...+ k_n a_n = 0 k1a1+k2a2+...+knan=0,则称向量组A是线性相关的,否则称它线性无关。

重点难点

**非常重要:**线性方程组的解,矩阵的秩可以和向量组的线性组合相关联。极大扩充了线性代数的数学内涵。
矩阵到矩阵的变换可以看作是向量组到向量组的变换。
矩阵C的列向量可以看成矩阵A的列向量线性表示,矩阵B为这一表示的系数矩阵。 C m × n = A m × l B l × n \boldsymbol{C}_{\boldsymbol{m}\times \boldsymbol{n}}=\boldsymbol{A}_{\boldsymbol{m}\times \boldsymbol{l}}\boldsymbol{B}_{\boldsymbol{l}\times \boldsymbol{n}} Cm×n=Am×lBl×n
矩阵C的行向量可以看成是B的行向量的线性表示,A为这一表示的系数矩阵。 C m × n = A m × l B l × n \boldsymbol{C}_{\boldsymbol{m}\times \boldsymbol{n}}=\boldsymbol{A}_{\boldsymbol{m}\times \boldsymbol{l}}\boldsymbol{B}_{\boldsymbol{l}\times \boldsymbol{n}} Cm×n=Am×lBl×n

线性相关的充分必要条件:向量组构成的矩阵的秩<向量个数,若秩等于向量个数,则线性无关。
线性相关可以用来判断方程组的独立性。
最大线性无关向量组,最大无关组;

重点公式

(空)

延伸扩展

数学归纳法

(1)归纳奠基:证明当n=1时命题成立;
(2)归纳假设:假设当n=k时命题成立;
(3)归纳递推:由归纳假设推出当n=k+1时命题也成立.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值