永磁同步电机模型推导(静止坐标系+旋转坐标系)

参考文献

  1. 电机传动系统控制-薛承基
  2. 交流电机动态分析-汤蕴缪
  3. Sychronous Machines Theory and Performances – Charles Concordia

1. 静止坐标系建模

V ⃗ a b c = R s i ⃗ a b c + d d t ψ ⃗ a b c \vec{V}_{abc}=R_s\vec{i}_{abc}+\frac{d}{dt}\vec{\psi}_{abc} V abc=Rsi abc+dtdψ abc
其中:
V ⃗ a b c = [ V a V b V c ] T i ⃗ a b c = [ i a i b i c ] T ψ ⃗ a b c = [ ψ a ψ b ψ c ] T \vec{V}_{abc}=\left[ \begin{matrix} V_a& V_b& V_c\\ \end{matrix} \right] ^T \\ \vec{i}_{abc}=\left[ \begin{matrix} i_a& i_b& i_c\\ \end{matrix} \right] ^T \\ \vec{\psi}_{abc}=\left[ \begin{matrix} \psi _a& \psi _b& \psi _c\\ \end{matrix} \right] ^T V abc=[VaVbVc]Ti abc=[iaibic]Tψ abc=[ψaψbψc]T

自感计算方法

单独推导了自感的计算方法,见单独的超链接如下。
自感计算推导
L a a = L l s + L A + L B cos ⁡ ( 2 θ ) L b b = L l s + L A + L B cos ⁡ ( 4 3 π − 2 θ ) L b b = L l s + L A + L B cos ⁡ ( 4 3 π + 2 θ ) L_{aa}=L_{ls}+L_A+L_B\cos \left( 2\theta \right) \\ L_{bb}=L_{ls}+L_A+L_B\cos \left( \frac{4}{3}\pi -2\theta \right) \\ L_{bb}=L_{ls}+L_A+L_B\cos \left( \frac{4}{3}\pi +2\theta \right) Laa=Lls+LA+LBcos(2θ)Lbb=Lls+LA+LBcos(34π2θ)Lbb=Lls+LA+LBcos(34π+2θ)

相间互感的计算方法

单独推导了相间互感计算方法,见单独的超链接如下。
相间互感计算方法
L a b = − L A 2 + L B cos ⁡ ( 2 θ − 2 3 π ) L a c = − L A 2 + L B cos ⁡ ( 2 θ + 2 3 π ) L b c = − L A 2 + L B cos ⁡ ( 2 θ ) L_{ab}=-\frac{L_A}{2}+L_B\cos \left( 2\theta -\frac{2}{3}\pi \right) \\ L_{ac}=-\frac{L_A}{2}+L_B\cos \left( 2\theta +\frac{2}{3}\pi \right) \\ L_{bc}=-\frac{L_A}{2}+L_B\cos \left( 2\theta \right) Lab=2LA+LBcos(2θ32π)Lac=2LA+LBcos(2θ+32π)Lbc=2LA+LBcos(2θ)
L A L_A LA表示静止坐标系下,每相自感的平均值; L B L_B LB表示静止坐标系下每项自感波动分量的最大值;

定子绕组交链转子磁链的部分

ψ a f = ψ f cos ⁡ ( θ ) ψ b f = ψ f cos ⁡ ( θ − 2 3 π ) ψ c f = ψ f cos ⁡ ( θ + 2 3 π ) \psi _{af}=\psi _f\cos \left( \theta \right) \\ \psi _{bf}=\psi _f\cos \left( \theta -\frac{2}{3}\pi \right) \\ \psi _{cf}=\psi _f\cos \left( \theta +\frac{2}{3}\pi \right) ψaf=ψfcos(θ)ψbf=ψfcos(θ32π)ψcf=ψfcos(θ+32π)

定子绕组磁链(矩阵形式)

ψ ⃗ a b c = [ L a a L a b L a c L b a L b b L b c L c a L c b L c c ] [ i a i b i c ] + [ cos ⁡ θ cos ⁡ ( 2 3 π − θ ) cos ⁡ ( 2 3 π + θ ) ] ψ f \vec{\psi}_{abc}=\left[ \begin{matrix} L_{aa}& L_{ab}& L_{ac}\\ L_{ba}& L_{bb}& L_{bc}\\ L_{ca}& L_{cb}& L_{cc}\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta\\ \cos \left( \frac{2}{3}\pi -\theta \right)\\ \cos \left( \frac{2}{3}\pi +\theta \right)\\ \end{array} \right] \psi _f ψ abc= LaaLbaLcaLabLbbLcbLacLbcLcc iaibic + cosθcos(32πθ)cos(32π+θ) ψf

转化为空间复矢量

计算定子电流产生的磁链复矢量

L s = [ L l s + L A + L B cos ⁡ ( 2 θ a ) − 1 2 L A + L B cos ⁡ ( 2 θ − 2 3 π ) − L A 2 + L B cos ⁡ ( 2 θ + 2 3 π ) − 1 2 L A + L B cos ⁡ ( 2 θ − 2 3 π ) L l s + L A + L B cos ⁡ ( 2 θ + 2 3 π ) − L A 2 + L B cos ⁡ ( 2 θ ) − L A 2 + L B cos ⁡ ( 2 θ + 2 3 π ) − L A 2 + L B cos ⁡ ( 2 θ ) L l s + L A + L B cos ⁡ ( 2 θ − 2 3 π ) ] L_s=\left[ \begin{matrix} L_{ls}+L_A+L_B\cos \left( 2\theta _a \right)& -\frac{1}{2}L_A+L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& -\frac{L_A}{2}+L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)\\ -\frac{1}{2}L_A+L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_{ls}+L_A+L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& -\frac{L_A}{2}+L_B\cos \left( 2\theta \right)\\ -\frac{L_A}{2}+L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& -\frac{L_A}{2}+L_B\cos \left( 2\theta \right)& L_{ls}+L_A+L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)\\ \end{matrix} \right] Ls= Lls+LA+LBcos(2θa)21LA+LBcos(2θ32π)2LA+LBcos(2θ+32π)21LA+LBcos(2θ32π)Lls+LA+LBcos(2θ+32π)2LA+LBcos(2θ)2LA+LBcos(2θ+32π)2LA+LBcos(2θ)Lls+LA+LBcos(2θ32π)
将电感矩阵可以分拆为三个电感矩阵以便计算:
L s = L 1 + L 2 + L 3 L 1 = [ L l s 0 0 0 L l s 0 0 0 L l s ] ; L 2 = [ L A − 1 2 L A − 1 2 L A − 1 2 L A L A − 1 2 L A − 1 2 L A − 1 2 L A L A ] ; L 3 = [ L B cos ⁡ ( 2 θ a ) L B cos ⁡ ( 2 θ − 2 3 π ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ − 2 3 π ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ ) L B cos ⁡ ( 2 θ − 2 3 π ) ] L_s=L_1+L_2+L_3 \\ L_1=\left[ \begin{matrix} L_{ls}& 0& 0\\ 0& L_{ls}& 0\\ 0& 0& L_{ls}\\ \end{matrix} \right] ;L_2=\left[ \begin{matrix} L_A& -\frac{1}{2}L_A& -\frac{1}{2}L_A\\ -\frac{1}{2}L_A& L_A& -\frac{1}{2}L_A\\ -\frac{1}{2}L_A& -\frac{1}{2}L_A& L_A\\ \end{matrix} \right] ; \\ L_3=\left[ \begin{matrix} L_B\cos \left( 2\theta _a \right)& L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)\\ L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta \right)\\ L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta \right)& L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)\\ \end{matrix} \right] Ls=L1+L2+L3L1= Lls000Lls000Lls ;L2= LA21LA21LA21LALA21LA21LA21LALA ;L3= LBcos(2θa)LBcos(2θ32π)LBcos(2θ+32π)LBcos(2θ32π)LBcos(2θ+32π)LBcos(2θ)LBcos(2θ+32π)LBcos(2θ)LBcos(2θ32π)

计算磁链复矢量:
ψ ⃗ s = 2 3 [ 1 a a 2 ] [ ψ a ψ b ψ c ] ψ ⃗ s = 2 3 [ 1 a a 2 ] [ L 1 + L 2 + L 3 ] [ i a i b i c ] \vec{\psi}_s=\frac{2}{3}\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ \begin{array}{c} \psi _a\\ \psi _b\\ \psi _c\\ \end{array} \right] \\ \vec{\psi}_s=\frac{2}{3}\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ L_1+L_2+L_3 \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] ψ s=32[1aa2] ψaψbψc ψ s=32[1aa2][L1+L2+L3] iaibic
带入L1,L2,L3可得:
ψ ⃗ s = 2 3 [ 1 a a 2 ] [ L l s 0 0 0 L l s 0 0 0 L l s ] [ i a i b i c ] + 2 3 [ 1 a a 2 ] [ L A − 1 2 L A − 1 2 L A − 1 2 L A L A − 1 2 L A − 1 2 L A − 1 2 L A L A ] [ i a i b i c ] + 2 3 [ 1 a a 2 ] [ L B cos ⁡ ( 2 θ a ) L B cos ⁡ ( 2 θ − 2 3 π ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ − 2 3 π ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ ) L B cos ⁡ ( 2 θ − 2 3 π ) ] [ i a i b i c ] \vec{\psi}_s=\frac{2}{3}\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ \begin{matrix} L_{ls}& 0& 0\\ 0& L_{ls}& 0\\ 0& 0& L_{ls}\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] +\frac{2}{3}\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ \begin{matrix} L_A& -\frac{1}{2}L_A& -\frac{1}{2}L_A\\ -\frac{1}{2}L_A& L_A& -\frac{1}{2}L_A\\ -\frac{1}{2}L_A& -\frac{1}{2}L_A& L_A\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] \\ +\frac{2}{3}\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ \begin{matrix} L_B\cos \left( 2\theta _a \right)& L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)\\ L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta \right)\\ L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta \right)& L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] ψ s=32[1aa2] Lls000Lls000Lls iaibic +32[1aa2] LA21LA21LA21LALA21LA21LA21LALA iaibic +32[1aa2] LBcos(2θa)LBcos(2θ32π)LBcos(2θ+32π)LBcos(2θ32π)LBcos(2θ+32π)LBcos(2θ)LBcos(2θ+32π)LBcos(2θ)LBcos(2θ32π) iaibic
前两项可以可以容易计算得到:
L l s i ⃗ s + 3 2 L A i ⃗ s L_{ls}\vec{i}_s+\frac{3}{2}L_A\vec{i}_s Llsi s+23LAi s
下面着重计算第三项:
2 3 [ 1 a a 2 ] [ L B cos ⁡ ( 2 θ a ) L B cos ⁡ ( 2 θ − 2 3 π ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ − 2 3 π ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ ) L B cos ⁡ ( 2 θ + 2 3 π ) L B cos ⁡ ( 2 θ ) L B cos ⁡ ( 2 θ − 2 3 π ) ] [ i a i b i c ] \frac{2}{3}\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ \begin{matrix} L_B\cos \left( 2\theta _a \right)& L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)\\ L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta \right)\\ L_B\cos \left( 2\theta +\frac{2}{3}\pi \right)& L_B\cos \left( 2\theta \right)& L_B\cos \left( 2\theta -\frac{2}{3}\pi \right)\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] 32[1aa2] LBcos(2θa)LBcos(2θ32π)LBcos(2θ+32π)LBcos(2θ32π)LBcos(2θ+32π)LBcos(2θ)LBcos(2θ+32π)LBcos(2θ)LBcos(2θ32π) iaibic
根据欧拉公式有:
a = e j 2 π 3 ; a 2 = e − j 2 π 3 ; cos ⁡ θ = e j θ + e − j θ 2 a=e^{j\frac{2\pi}{3}};a^2=e^{-j\frac{2\pi}{3}}; \cos \theta =\frac{e^{j\theta}+e^{-j\theta}}{2} a=ej32π;a2=ej32π;cosθ=2ejθ+ejθ

因此可化简为:
2 3 L B [ 1 a a 2 ] [ cos ⁡ ( 2 θ a ) cos ⁡ ( 2 θ a − 2 3 π ) cos ⁡ ( 2 θ a + 2 3 π ) cos ⁡ ( 2 θ a − 2 3 π ) cos ⁡ ( 2 θ a + 2 3 π ) cos ⁡ ( 2 θ a ) cos ⁡ ( 2 θ a + 2 3 π ) cos ⁡ ( 2 θ a ) cos ⁡ ( 2 θ a − 2 3 π ) ] [ i a i b i c ] = 1 3 L B [ 1 e j 2 π 3 e − j 2 π 3 ] [ e j 2 θ a e j ( 2 θ a − 2 3 π ) e j ( 2 θ a + 2 3 π ) e j ( 2 θ a − 2 3 π ) e j ( 2 θ a + 2 3 π ) e j 2 θ a e j ( 2 θ a + 2 3 π ) e j 2 θ a e j ( 2 θ a − 2 3 π ) ] [ i a i b i c ] + 1 3 L B [ 1 e j 2 π 3 e − j 2 π 3 ] [ e − j 2 θ a e − j ( 2 θ a − 2 3 π ) e − j ( 2 θ a + 2 3 π ) e j ( − 2 θ a + 2 3 π ) e − j ( 2 θ a + 2 3 π ) e − j 2 θ a e j ( − 2 θ a − 2 3 π ) e − j 2 θ a e − j ( 2 θ a − 2 3 π ) ] [ i a i b i c ] \frac{2}{3}L_B\left[ \begin{matrix} 1& a& a^2\\ \end{matrix} \right] \left[ \begin{matrix} \cos \left( 2\theta _a \right)& \cos \left( 2\theta _a-\frac{2}{3}\pi \right)& \cos \left( 2\theta _a+\frac{2}{3}\pi \right)\\ \cos \left( 2\theta _a-\frac{2}{3}\pi \right)& \cos \left( 2\theta _a+\frac{2}{3}\pi \right)& \cos \left( 2\theta _a \right)\\ \cos \left( 2\theta _a+\frac{2}{3}\pi \right)& \cos \left( 2\theta _a \right)& \cos \left( 2\theta _a-\frac{2}{3}\pi \right)\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] \\ =\frac{1}{3}L_B\left[ \begin{matrix} 1& e^{j\frac{2\pi}{3}}& e^{-j\frac{2\pi}{3}}\\ \end{matrix} \right] \left[ \begin{matrix} e^{j2\theta _a}& e^{j\left( 2\theta _a-\frac{2}{3}\pi \right)}& e^{j\left( 2\theta _a+\frac{2}{3}\pi \right)}\\ e^{j\left( 2\theta _a-\frac{2}{3}\pi \right)}& e^{j\left( 2\theta _a+\frac{2}{3}\pi \right)}& e^{j2\theta _a}\\ e^{j\left( 2\theta _a+\frac{2}{3}\pi \right)}& e^{j2\theta _a}& e^{j\left( 2\theta _a-\frac{2}{3}\pi \right)}\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] \\ +\frac{1}{3}L_B\left[ \begin{matrix} 1& e^{j\frac{2\pi}{3}}& e^{-j\frac{2\pi}{3}}\\ \end{matrix} \right] \left[ \begin{matrix} e^{-j2\theta _a}& e^{-j\left( 2\theta _a-\frac{2}{3}\pi \right)}& e^{-j\left( 2\theta _a+\frac{2}{3}\pi \right)}\\ e^{j\left( -2\theta _a+\frac{2}{3}\pi \right)}& e^{-j\left( 2\theta _a+\frac{2}{3}\pi \right)}& e^{-j2\theta _a}\\ e^{j\left( -2\theta _a-\frac{2}{3}\pi \right)}& e^{-j2\theta _a}& e^{-j\left( 2\theta _a-\frac{2}{3}\pi \right)}\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] 32LB[1aa2] cos(2θa)cos(2θa32π)cos(2θa+32π)cos(2θa32π)cos(2θa+32π)cos(2θa)cos(2θa+32π)cos(2θa)cos(2θa32π) iaibic =31LB[1ej32πej32π] ej2θaej(2θa32π)ej(2θa+32π)ej(2θa32π)ej(2θa+32π)ej2θaej(2θa+32π)ej2θaej(2θa32π) iaibic +31LB[1ej32πej32π] ej2θaej(2θa+32π)ej(2θa32π)ej(2θa32π)ej(2θa+32π)ej2θaej(2θa+32π)ej2θaej(2θa32π) iaibic
= 1 3 L B [ 3 e j 2 θ a 3 e j ( 2 θ a − 2 3 π ) 3 e j ( 2 θ a + 2 3 π ) ] [ i a i b i c ] + 1 3 L B [ 0 0 0 ] [ i a i b i c ] = 3 2 L B i ⃗ s ∗ e j 2 θ a i ⃗ s ∗ 为共轭电流矢量,因此可得定子电流产生的定子磁链分量为: ψ ⃗ s 1 = ( L l s + 3 2 L A ) i ⃗ s + 3 2 L B i ⃗ s ∗ e j 2 θ a =\frac{1}{3}L_B\left[ \begin{matrix} 3e^{j2\theta _a}& 3e^{j\left( 2\theta _a-\frac{2}{3}\pi \right)}& 3e^{j\left( 2\theta _a+\frac{2}{3}\pi \right)}\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] +\frac{1}{3}L_B\left[ \begin{matrix} 0& 0& 0\\ \end{matrix} \right] \left[ \begin{array}{c} i_a\\ i_b\\ i_c\\ \end{array} \right] \\ =\frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a} \\ \vec{i}_{s}^{*}\text{为共轭电流矢量,} 因此可得定子电流产生的定子磁链分量为: \\ \vec{\psi}_{s1}=\left( L_{ls}+\frac{3}{2}L_A \right) \vec{i}_s+\frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a} =31LB[3ej2θa3ej(2θa32π)3ej(2θa+32π)] iaibic +31LB[000] iaibic =23LBi sej2θai s为共轭电流矢量,因此可得定子电流产生的定子磁链分量为:ψ s1=(Lls+23LA)i s+23LBi sej2θa

计算转子磁场在定子产生的磁链

ψ ⃗ s f = 2 3 [ 1 e j 2 π 3 e − j 2 π 3 ] [ cos ⁡ θ a cos ⁡ ( 2 3 π − θ a ) cos ⁡ ( 2 3 π + θ a ) ] ψ f = 1 3 [ 1 e j 2 π 3 e − j 2 π 3 ] [ e j θ a e j ( θ a − 2 3 π ) e j ( θ a + 2 3 π ) ] ψ f + 1 3 [ 1 e j 2 π 3 e − j 2 π 3 ] [ e − j θ a e − j ( θ a − 2 3 π ) e − j ( θ a + 2 3 π ) ] ψ f = ψ f e j θ a \vec{\psi}_{sf}=\frac{2}{3}\left[ \begin{matrix} 1& e^{j\frac{2\pi}{3}}& e^{-j\frac{2\pi}{3}}\\ \end{matrix} \right] \left[ \begin{array}{c} \cos \theta _a\\ \cos \left( \frac{2}{3}\pi -\theta _a \right)\\ \cos \left( \frac{2}{3}\pi +\theta _a \right)\\ \end{array} \right] \psi _f \\ =\frac{1}{3}\left[ \begin{matrix} 1& e^{j\frac{2\pi}{3}}& e^{-j\frac{2\pi}{3}}\\ \end{matrix} \right] \left[ \begin{array}{c} e^{j\theta _a}\\ e^{j\left( \theta _a-\frac{2}{3}\pi \right)}\\ e^{j\left( \theta _a+\frac{2}{3}\pi \right)}\\ \end{array} \right] \psi _f+\frac{1}{3}\left[ \begin{matrix} 1& e^{j\frac{2\pi}{3}}& e^{-j\frac{2\pi}{3}}\\ \end{matrix} \right] \left[ \begin{array}{c} e^{-j\theta _a}\\ e^{-j\left( \theta _a-\frac{2}{3}\pi \right)}\\ e^{-j\left( \theta _a+\frac{2}{3}\pi \right)}\\ \end{array} \right] \psi _f \\ =\psi _fe^{j\theta _a} ψ sf=32[1ej32πej32π] cosθacos(32πθa)cos(32π+θa) ψf=31[1ej32πej32π] ejθaej(θa32π)ej(θa+32π) ψf+31[1ej32πej32π] ejθaej(θa32π)ej(θa+32π) ψf=ψfejθa

定子总磁链

ψ ⃗ s = ( L l s + 3 2 L A ) i ⃗ s + 3 2 L B i ⃗ s ∗ e j 2 θ a + ψ f e j θ a \vec{\psi}_s=\left( L_{ls}+\frac{3}{2}L_A \right) \vec{i}_s+\frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a}+\psi _fe^{j\theta _a} ψ s=(Lls+23LA)i s+23LBi sej2θa+ψfejθa

电压方程的复失量形式

u ⃗ s = R s i ⃗ s + d d t ψ ⃗ s u ⃗ s = R s i ⃗ s + d d t [ ( L l s + 3 2 L A ) i ⃗ s + 3 2 L B i ⃗ s ∗ e j 2 θ a + ψ f e j θ a ] u ⃗ s e − j θ a = R s i ⃗ s e − j θ a + e − j θ a d d t [ ( L l s + 3 2 L A ) ( i ⃗ d q s e j θ a ) + 3 2 L B i ⃗ s ∗ e j 2 θ a + ψ f e j θ a ] 根据以下公式: 3 2 L B i ⃗ s ∗ e j 2 θ a = 3 2 L B i ⃗ d q s ∗ e j θ a u ⃗ d q s = R s i ⃗ d q s + ( L l s + 3 2 L A ) d d t i ⃗ d q s + j ω r ( L l s + 3 2 L A ) i ⃗ d q s + 3 2 L B d d t i ⃗ d q s ∗ + j ω r 3 2 L B i ⃗ d q s ∗ + j ω r Ψ f \vec{u}_s=R_s\vec{i}_s+\frac{d}{dt}\vec{\psi}_s \\ \vec{u}_s=R_s\vec{i}_s+\frac{d}{dt}\left[ \left( L_{ls}+\frac{3}{2}L_A \right) \vec{i}_s+\frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a}+\psi _fe^{j\theta _a} \right] \\ \vec{u}_se^{-j\theta _a}=R_s\vec{i}_se^{-j\theta _a}+e^{-j\theta _a}\frac{d}{dt}\left[ \left( L_{ls}+\frac{3}{2}L_A \right) \left( \vec{i}_{dqs}e^{j\theta _a} \right) +\frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a}+\psi _fe^{j\theta _a} \right] \\ \text{根据以下公式:} \\ \frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a}=\frac{3}{2}L_B\vec{i}_{dqs}^{*}e^{j\theta _a} \\ \vec{u}_{dqs}=R_s\vec{i}_{dqs}+\left( L_{ls}+\frac{3}{2}L_A \right) \frac{d}{dt}\vec{i}_{dqs}+j\omega _r\left( L_{ls}+\frac{3}{2}L_A \right) \vec{i}_{dqs}+\frac{3}{2}L_B\frac{d}{dt}\vec{i}_{dqs}^{*}+j\omega _r\frac{3}{2}L_B\vec{i}_{dqs}^{*}+j\omega _r\varPsi _f u s=Rsi s+dtdψ su s=Rsi s+dtd[(Lls+23LA)i s+23LBi sej2θa+ψfejθa]u sejθa=Rsi sejθa+ejθadtd[(Lls+23LA)(i dqsejθa)+23LBi sej2θa+ψfejθa]根据以下公式:23LBi sej2θa=23LBi dqsejθau dqs=Rsi dqs+(Lls+23LA)dtdi dqs+jωr(Lls+23LA)i dqs+23LBdtdi dqs+jωr23LBi dqs+jωrΨf
根据以下公式: i ⃗ d q s ∗ = i d − j i q , i ⃗ d q s = i d + j i q 可以化简得到电压方程: u s d = R s i s d + ( L l s + 3 2 L A ) d d t i s d + 3 2 L B d d t i s d − ω r ( L l s + 3 2 L A ) i s q + ω r 3 2 L B i ⃗ s q u s d = R s i s q + ( L l s + 3 2 L A ) d d t i s q − 3 2 L B d d t i s d + ω r ( L l s + 3 2 L A ) i s d + ω r 3 2 L B i ⃗ s d + ω r Ψ f 令: L d = L l s + 3 2 ( L A + L B ) ; L q = L l s + 3 2 ( L A − L B ) 化简可得: u s d = R s i s d + L d d i s d d t − ω r L q i s q 同理可得: u s d = R s i s q + L q d i s q d t + ω r L d i s d + ω r Ψ f \text{根据以下公式:}\vec{i}_{dqs}^{*}=i_d-ji_q,\vec{i}_{dqs}=i_d+ji_q \\ \text{可以化简得到电压方程:} \\ u_{sd}=R_si_{sd}+\left( L_{ls}+\frac{3}{2}L_A \right) \frac{d}{dt}i_{sd}+\frac{3}{2}L_B\frac{d}{dt}i_{sd}-\omega _r\left( L_{ls}+\frac{3}{2}L_A \right) i_{sq}+\omega _r\frac{3}{2}L_B\vec{i}_{sq} \\ u_{sd}=R_si_{sq}+\left( L_{ls}+\frac{3}{2}L_A \right) \frac{d}{dt}i_{sq}-\frac{3}{2}L_B\frac{d}{dt}i_{sd}+\omega _r\left( L_{ls}+\frac{3}{2}L_A \right) i_{sd}+\omega _r\frac{3}{2}L_B\vec{i}_{sd}+\omega _r\varPsi _f \\ \text{令:}L_d=L_{ls}+\frac{3}{2}\left( L_A+L_B \right) ;L_q=L_{ls}+\frac{3}{2}\left( L_A-L_B \right) \\ \text{化简可得:}u_{sd}=R_si_{sd}+L_d\frac{di_{sd}}{dt}-\omega _rL_qi_{sq} \\ \text{同理可得:}u_{sd}=R_si_{sq}+L_q\frac{di_{sq}}{dt}+\omega _rL_di_{sd}+\omega _r\varPsi _f 根据以下公式:i dqs=idjiq,i dqs=id+jiq可以化简得到电压方程:usd=Rsisd+(Lls+23LA)dtdisd+23LBdtdisdωr(Lls+23LA)isq+ωr23LBi squsd=Rsisq+(Lls+23LA)dtdisq23LBdtdisd+ωr(Lls+23LA)isd+ωr23LBi sd+ωrΨf令:Ld=Lls+23(LA+LB);Lq=Lls+23(LALB)化简可得:usd=Rsisd+LddtdisdωrLqisq同理可得:usd=Rsisq+Lqdtdisq+ωrLdisd+ωrΨf

静止两相坐标系模型推导

静止坐标系下推导磁链矢量:
ψ ⃗ s = ( L l s + 3 2 L A ) i ⃗ s + 3 2 L B i ⃗ s ∗ e j 2 θ a + ψ f e j θ a ψ ⃗ s = ( L l s + 3 2 L A ) ( i α + j i β ) + 3 2 L B ( i α − j i β ) ( cos ⁡ 2 θ r + j sin ⁡ 2 θ r ) + ψ f ( cos ⁡ θ r + j sin ⁡ θ r ) ψ ⃗ s = [ ( L l s + 3 2 L A ) + 3 2 L B cos ⁡ 2 θ r ] i α + 3 2 L B sin ⁡ 2 θ r i β + ψ f cos ⁡ θ r + j [ ( L l s + 3 2 L A ) − 3 2 L B cos ⁡ 2 θ r ] i β + j 3 2 L B sin ⁡ 2 θ r i α + j ψ f sin ⁡ θ r ψ ⃗ s = [ ( L l s + 3 2 L A ) + 3 2 L B cos ⁡ 2 θ r 3 2 L B sin ⁡ 2 θ r 3 2 L B sin ⁡ 2 θ r ( L l s + 3 2 L A ) − 3 2 L B cos ⁡ 2 θ r ] [ i α i β ] + [ ψ f cos ⁡ θ r ψ f sin ⁡ θ r ] \vec{\psi}_s=\left( L_{ls}+\frac{3}{2}L_A \right) \vec{i}_s+\frac{3}{2}L_B\vec{i}_{s}^{*}e^{j2\theta _a}+\psi _fe^{j\theta _a} \\ \vec{\psi}_s=\left( L_{ls}+\frac{3}{2}L_A \right) \left( i_{\alpha}+ji_{\beta} \right) +\frac{3}{2}L_B\left( i_{\alpha}-ji_{\beta} \right) \left( \cos 2\theta _r+j\sin 2\theta _r \right) +\psi _f\left( \cos \theta _r+j\sin \theta _r \right) \\ \vec{\psi}_s=\left[ \left( L_{ls}+\frac{3}{2}L_A \right) +\frac{3}{2}L_B\cos 2\theta _r \right] i_{\alpha}+\frac{3}{2}L_B\sin 2\theta _ri_{\beta}+\psi _f\cos \theta _r \\ +j\left[ \left( L_{ls}+\frac{3}{2}L_A \right) -\frac{3}{2}L_B\cos 2\theta _r \right] i_{\beta}+j\frac{3}{2}L_B\sin 2\theta _ri_{\alpha}+j\psi _f\sin \theta _r \\ \vec{\psi}_s=\left[ \begin{matrix} \left( L_{ls}+\frac{3}{2}L_A \right) +\frac{3}{2}L_B\cos 2\theta _r& \frac{3}{2}L_B\sin 2\theta _r\\ \frac{3}{2}L_B\sin 2\theta _r& \left( L_{ls}+\frac{3}{2}L_A \right) -\frac{3}{2}L_B\cos 2\theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\left[ \begin{array}{c} \psi _f\cos \theta _r\\ \psi _f\sin \theta _r\\ \end{array} \right] ψ s=(Lls+23LA)i s+23LBi sej2θa+ψfejθaψ s=(Lls+23LA)(iα+jiβ)+23LB(iαjiβ)(cos2θr+jsin2θr)+ψf(cosθr+jsinθr)ψ s=[(Lls+23LA)+23LBcos2θr]iα+23LBsin2θriβ+ψfcosθr+j[(Lls+23LA)23LBcos2θr]iβ+j23LBsin2θriα+jψfsinθrψ s=[(Lls+23LA)+23LBcos2θr23LBsin2θr23LBsin2θr(Lls+23LA)23LBcos2θr][iαiβ]+[ψfcosθrψfsinθr]
进行变量代换:
根据电感定义: L d = L l s + 3 2 L A + 3 2 L B L q = L l s + 3 2 L A − 3 2 L B 可得: L l s + 3 2 L A = L d + L q 2 , 3 2 L B = L d − L q 2 分别令: L l s + 3 2 L A = L 1 , 3 2 L B = L 2 因此: ψ ⃗ s = [ L 1 + L 2 cos ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 1 − L 2 cos ⁡ 2 θ r ] [ i α i β ] + [ ψ f cos ⁡ θ r ψ f sin ⁡ θ r ] \text{根据电感定义:} \\ L_d=L_{ls}+\frac{3}{2}L_A+\frac{3}{2}L_B \\ L_q=L_{ls}+\frac{3}{2}L_A-\frac{3}{2}L_B \\ \text{可得:}L_{ls}+\frac{3}{2}L_A=\frac{L_d+L_q}{2},\frac{3}{2}L_B=\frac{L_d-L_q}{2} \\ \text{分别令:}L_{ls}+\frac{3}{2}L_A=L_1\text{,}\frac{3}{2}L_B=L_2 \\ \text{因此:} \\ \vec{\psi}_s=\left[ \begin{matrix} L_1+L_2\cos 2\theta _r& L_2\sin 2\theta _r\\ L_2\sin 2\theta _r& L_1-L_2\cos 2\theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\left[ \begin{array}{c} \psi _f\cos \theta _r\\ \psi _f\sin \theta _r\\ \end{array} \right] 根据电感定义:Ld=Lls+23LA+23LBLq=Lls+23LA23LB可得:Lls+23LA=2Ld+Lq,23LB=2LdLq分别令:Lls+23LA=L123LB=L2因此:ψ s=[L1+L2cos2θrL2sin2θrL2sin2θrL1L2cos2θr][iαiβ]+[ψfcosθrψfsinθr]
因此可得静止两相坐标系下的电压方程:
u ⃗ s = R s i ⃗ s + d d t ψ ⃗ s ψ ⃗ s = [ L 1 + L 2 cos ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 1 − L 2 cos ⁡ 2 θ r ] [ i α i β ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f \vec{u}_s=R_s\vec{i}_s+\frac{d}{dt}\vec{\psi}_s \\ \vec{\psi}_s=\left[ \begin{matrix} L_1+L_2\cos 2\theta _r& L_2\sin 2\theta _r\\ L_2\sin 2\theta _r& L_1-L_2\cos 2\theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f u s=Rsi s+dtdψ sψ s=[L1+L2cos2θrL2sin2θrL2sin2θrL1L2cos2θr][iαiβ]+[cosθrsinθr]ψf
另外可得 α β \alpha\beta αβ坐标系下的另外一种形式:
[ i α i β ] = [ cos ⁡ θ r − sin ⁡ θ r sin ⁡ θ r cos ⁡ θ r ] [ i d i q ] ψ ⃗ s = [ L 1 + L 2 cos ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 2 sin ⁡ 2 θ r L 1 − L 2 cos ⁡ 2 θ r ] [ cos ⁡ θ r − sin ⁡ θ r sin ⁡ θ r cos ⁡ θ r ] [ i d i q ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f ψ ⃗ s = [ L 11 L 12 L 21 L 22 ] [ i d i q ] + [ cos ⁡ θ r sin ⁡ θ r ] ψ f L 11 = L 1 cos ⁡ θ r + L 2 cos ⁡ 2 θ r cos ⁡ θ r + L 2 sin ⁡ 2 θ r sin ⁡ θ r = ( L 1 + L 2 ) cos ⁡ θ r L 12 = ( L 2 − L 1 ) sin ⁡ θ r L 21 = ( L 1 + L 2 ) sin ⁡ θ r L 22 = ( L 1 − L 2 ) cos ⁡ θ r 因为: L 1 + L 2 = L d ; L 1 − L 2 = L q ; 因此: ψ ⃗ s = [ cos ⁡ θ r − sin ⁡ θ r sin ⁡ θ r cos ⁡ θ r ] [ L d i d + ψ f L q i q ] \left[ \begin{array}{c} i_{\alpha}\\ i_{\beta}\\ \end{array} \right] =\left[ \begin{matrix} \cos \theta _r& -\sin \theta _r\\ \sin \theta _r& \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] \\ \vec{\psi}_s=\left[ \begin{matrix} L_1+L_2\cos 2\theta _r& L_2\sin 2\theta _r\\ L_2\sin 2\theta _r& L_1-L_2\cos 2\theta _r\\ \end{matrix} \right] \left[ \begin{matrix} \cos \theta _r& -\sin \theta _r\\ \sin \theta _r& \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f \\ \vec{\psi}_s=\left[ \begin{matrix} L_{11}& L_{12}\\ L_{21}& L_{22}\\ \end{matrix} \right] \left[ \begin{array}{c} i_d\\ i_q\\ \end{array} \right] +\left[ \begin{array}{c} \cos \theta _r\\ \sin \theta _r\\ \end{array} \right] \psi _f \\ L_{11}=L_1\cos \theta _r+L_2\cos 2\theta _r\cos \theta _r+L_2\sin 2\theta _r\sin \theta _r=\left( L_1+L_2 \right) \cos \theta _r \\ L_{12}=\left( L_2-L_1 \right) \sin \theta _r \\ L_{21}=\left( L_1+L_2 \right) \sin \theta _r \\ L_{22}=\left( L_1-L_2 \right) \cos \theta _r \\ \text{因为:}L_1+L_2=L_d\text{;}L_1-L_2=L_q; \\ \text{因此:}\vec{\psi}_s=\left[ \begin{matrix} \cos \theta _r& -\sin \theta _r\\ \sin \theta _r& \cos \theta _r\\ \end{matrix} \right] \left[ \begin{array}{c} L_di_d+\psi _f\\ L_qi_q\\ \end{array} \right] [iαiβ]=[cosθrsinθrsinθrcosθr][idiq]ψ s=[L1+L2cos2θrL2sin2θrL2sin2θrL1L2cos2θr][cosθrsinθrsinθrcosθr][idiq]+[cosθrsinθr]ψfψ s=[L11L21L12L22][idiq]+[cosθrsinθr]ψfL11=L1cosθr+L2cos2θrcosθr+L2sin2θrsinθr=(L1+L2)cosθrL12=(L2L1)sinθrL21=(L1+L2)sinθrL22=(L1L2)cosθr因为:L1+L2=LdL1L2=Lq;因此:ψ s=[cosθrsinθrsinθrcosθr][Ldid+ψfLqiq]

总结推导的难点

  1. 互感的计算;需要利用双反应定律
  2. 复矢量合成时,二倍频分量的处理,需要利用欧拉公式计算;
  3. 进行dq轴变换时,需要注意负序电流的处理,负序电流的作用产生了dq轴不同电感的区别,可见负序分量电流矢量在永磁同步电机中的关键作用;
  4. 薛承基的书籍中有大量的错误,如P104页,错误非常多;
  5. 静止两相坐标系下的磁链矩阵存在2次谐波项,无法通过静止两相坐标系进行磁链观测,除非是隐极电机。
  6. 在静止两相坐标系下,主要L1和L2的物理意义。L1指漏感+1.5倍定子每相平均电感,L2指1.5倍定子电感脉动分量的最大值。L1和L2与Ld,Lq存在明确关系。
    L l s + 3 2 L A = L 1 , 3 2 L B = L 2 L d = L 1 + L 2 L q = L 1 − L 2 L_{ls}+\frac{3}{2}L_A=L_1\text{,}\frac{3}{2}L_B=L_2 \\ L_d=L_1+L_2 \\ L_q=L_1-L_2 Lls+23LA=L123LB=L2Ld=L1+L2Lq=L1L2
  • 15
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值