读《REGAL: Representation Learning-based Graph Alignment》

2018

摘要

利用自动学习节点表示的能力来匹配不同图上的节点

xNetMF,一种节点嵌入公式,可泛化到多网络问题(也就是可以用到图相似问题呗)

1.引文

许多图挖掘任务涉及跨多个网络的节点的联合分析,如网络对齐 [2, 18, 42] 和图相似性

最近的进展 [9, 28, 35, 39] 使学习节点特征表示的过程自动化,并在下游预测、分类和聚类任务中取得了最先进的性能。 受这些成功的启发,本文通过匹配节点表示来提出网络对齐。

REGAL,基于表示的图对齐框架,通过对齐特征表示来进行图间节点匹配
在这里插入图片描述
提出跨网络矩阵分解 (xNetMF) ,保证不相交图中节点之间的结构相似性和属性一致性(如果后者可用)。
为了避免显式构建完整的相似度矩阵(因为计算量大,NP难),扩展了

通常用于大规模内核机器的 Nyström 低秩近似 [6]

2.相关

网络对齐

通常建模为如下优化问题
在这里插入图片描述
P 是置换矩阵,或者更加松弛,

例如双随机矩阵 [38] 或其他一些凹/凸松弛 [41]

常用的解决网络对齐的方法诸如遗传算法,谱方法,聚类算法,决策树,最大期望,概率,置信分布传播 [2, 16, 34, 36]
这些都需要对数据进行处理(不好端到端吧,但是这里举的例子,[15]需要先验(也就是有监督的标签吧),[18]是要求输入为二部图,[42]是要求有节点/边属性,应该算是针对性问题,不能算那么严重吧)

节点表示学习

主要基于随机游走或者一二阶邻居,结合上下文,其他节点的属性

但是[11]提出这样会导致网络不对齐不一致

[31]考察节点结构相似性,无所谓临近程度,通过可视化可以说比基于临近的方法更有可比性

低秩矩阵近似

仅在核机器的统计学习领域发光发热,本文将其引入到节点嵌入

3.REGAL:基于表示学习的图对齐

不需要统一两图的尺寸,记n=|V1|+|V2|
(1)节点身份抽取:第一步抽取所有n个节点的结构和属性相关信息。
(2)有效的基于相似的表示:第二步获得节点嵌入,通过分解上一步中节点身份的相似矩阵。 为了避免计算成对节点相似性和显式分解的昂贵计算,扩展低秩矩阵近似的Nyström 方法, (a) 每个节点仅需与远小于n的p个标准点求相似性, (b) 通过对这些节点到标准点的相似性做低秩近似的分解中构建表示。
(3) 快速节点表示对齐:最后,通过将嵌入与有效的数据结构匹配来对齐图之间的节点,该结构允许从其他图快速识别最相似的前 α 嵌入。

3.1 第一步:节点身份提取

3.2 第 2 步:高效的基于相似性的表示

3.3 第三步:快速节点表示对齐

3.4 复杂度分析

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值