在图1中,美国是Wikidata中科比·布莱恩特的一跳(直接)邻居。 但是在DBpedia中,它是两跳邻居。
在AliNet中,通过门控机制通过在k跳内对其邻域信息进行控制的聚合来学习实体表示。 在不失一般性的前提下,以下我们展示了汇总一跳和两跳邻域信息(k = 2)的情况。 网络结构如图3所示。请注意,AliNet也可以扩展到更多的跃点。
具体来说,每个AliNet层都具有多种功能,可在多个跃点内聚合邻域信息。 为了减少噪声信息,我们进一步采用了一种针对远距离邻域聚集的注意机制,以端到端的方式找出重要的邻居。 最后,我们使用门控机制来组合多个聚合函数的输出表示,以获取当前层中的隐藏表示。 我们还设计了一种关系损失来细化实体表示,并使AliNet能够捕获某些特殊结构,例如三角形关系结构。 我们对烧蚀进行了详尽的研究,并对五个实体对齐数据集进行了详细的分析,证明了AliNet的有效性及其各项技术贡献。
其中N1(·)表示给定实体的一跳邻居集,W(l)是第