如何利用NHANES数据开展队列研究?

本文详细介绍了如何获取和处理NHANES数据库中的随访死亡数据,以开展队列研究。首先,访问死亡数据链接并下载所需文件,包括数据、字典和R代码。接着,使用R代码注释死亡数据文件,选择正确的版本进行数据注释。注释完成后,结合字典文件理解变量含义,并根据SEQN字段与其它年份数据合并,最终得到可用于队列研究的数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

了解NHANES数据库的人都知道,它是一项全美范围内的横断面调查,但是小编之前也分享过一篇使用NHANES数据开展前瞻性队列研究的文献,今天跟大家分享一下如何获取一份利用nahens数据开展队列研究所需要的随访结果!

1、打开死亡数据链接

https://www.cdc.gov/nchs/data-linkage/mortality.htm

打开后点击Public-Use Files

图片

2、下载Public-Use 2015 LMFSample R program文件

Public-Use 2015 LMF:字典,内有每个字段的相应解释

Sample R program:用于死亡数据注释的R代码,也支持SAS和Stata,下载对应文件即可

3、点击死亡数据下载网址(FTP Site

图片

 根据需要下载对应年份的数据,这里小编下载2013-2014的数据,则随访时间为1年(需要注意的是,死亡数据只更新到2015年为止,所以大家如果要利用nhanes做队列研究,只能下载2015年以前的数据)

4、此时文件夹里多了3个文件,依次是死亡数据,字典,以及R代码

图片

5、注释死亡数据文件

(1)用R打开R_ReadlnProgramAllSurveys.R文件

图片

(2)代码从57行开始(选中相应代码,点击Run可直接运行),跑完65行看下文选择相应版本代码后再继续运行 

图片

(3)选择注释代码版本

官方直接下载的R代码里包括了两个版本的注释代码:NHIS VERISONNHNES VERISON。

小编下载的是NHNES版本的数据,文件注释代码选择NHANES VERISON(从164行代码开始)

图片

只需要正确修改167和168行的文件名就行,改完这2行后,可将后续代码全部选中,然后点击Run,这样就完成了死亡数据文件的注释 

图片

如果下载的是NHIS版本的数据就从72行跑到157行就结束(也只需要注意命名一下72行和73行的文件名)

6、变量解释可以参考Public-Use 2015 LMF文件(也就是字典)

图片

 注释后的死亡数据根据SEQN字段就可以和相应年份的其他数据合并了,这样就得到了一份可以开展队列研究的数据了!


 

### NHANES 数据库介绍 #### 背景 国家健康与营养检查调查 (National Health and Nutrition Examination Survey, NHANES) 是一项由美国疾病控制与预防中心 (CDC) 的国家卫生统计中心 (NCHS) 进行的持续性研究项目。该计划旨在评估美国人口的健康和营养状况,通过综合性的体检、实验室测试以及面对面访谈收集数据。 #### 数据结构 NHANES 数据库涵盖了多个方面的信息,主要包括但不限于以下几个方面: - **人口统计数据**:包括年龄、性别、种族等基本信息。 - **健康行为因素**:如吸烟习惯、饮酒频率、身体活动水平等。 - **医疗历史记录**:既往病史、慢性疾病的诊断情况等。 - **生理测量数据**:身高体重指数(BMI)、血压读数等物理特征参数。 - **生化检测结果**:血液样本分析得出的各种生物标志物浓度值。 这些丰富的多维度资料使得研究人员能够深入探讨各种公共卫生议题,并支持广泛的流行病学研究[^2]。 #### 使用方法 利用 NHANES 数据库开展科研工作通常涉及以下环节: 对于想要获取并处理 NHANES 原始数据研究人员来说,可以访问官方提供的在线资源平台下载所需文件;之后借助 SAS 或 SPSS 等专业软件包来进行数据分析前准备——即清理整理原始表格使之适用于特定目的之下的统计建模过程。此外,在构建预测模型时还可以考虑引入先进的算法技术比如机器学习中的集成学习方法来提高准确性[^3]。 当涉及到具体的应用场景时,则需依据实际需求选取合适的变量集合作为输入特征向量用于后续的任务执行,例如建立肥胖症风险预警系统可能就需要结合个体的生活方式选择(饮食偏好)、遗传背景以及其他潜在影响因子共同考量[^4]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier # 加载NHANES数据集 data = pd.read_csv('path_to_nhanes_data.csv') # 特征工程... X_train, X_test, y_train, y_test = train_test_split(X, y) clf = RandomForestClassifier() clf.fit(X_train, y_train) ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值