百度ERNIE系列预训练语言模型浅析(1)-ERNIE

本文概述了百度ERNIE模型从1.0到3.0的发展,重点介绍了多阶段的知识掩码策略,包括词级别、短语级别和实体级别,以及多轮对话任务如何提升模型的语义理解能力。BERT的基础MLM任务在此基础上得以增强。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(写在文章前,我是一个对NLP感兴趣的小白,这篇文章是阅读论文时的粗略笔记~~)
在这里插入图片描述

百度的ERNIE系列模型,其没有对网络模型本身进行结构上的大改动,而是着重于如何构造合理的预训练任务,以及如何更好地利用数据构造无监督的训练集。本文主要从各模型的原理、优点、缺点、解决了什么问题等方面来讲述百度ERNIE1.0\ ERNIE2.0\ ERNIE3.0的进化历程,并对比了模型之间的区别与联系。个人理解浅显,希望与读者交流。

ERNIE: Enhanced Representation through Knowledge Integration
Sun Y, Wang S, Li Y, et al. Ernie: Enhanced representation through knowledge integration[J]. arXiv preprint arXiv:1904.09223, 2019.

关键词: a multi-stage knowledge masking strategy ,对phrase(短语)和entity(实体)做mask,间接的加入知识图谱

1、Knowledge masking strategies(知识完形填空策略)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值