<PCL Docs 解析>如何使用随机样本共识模型RANSAC

如何使用随机样本共识模型

在本教程中, 我们学习如何使用带有平面模型的 RandomSampleConsensus 来获得适合该模型 的云。

理论入门

“RANdom SAmple Consensus"的缩写是RANSAC, 它是一种迭代方法, 用于从一组包含异常值 的数据中估计数学模型的参数。该算法由 Fischler 和 Bolles 于 1981 年发布。RANSAC 算法假 设我们正在查看的所有数据都包含内部值和异常值。异常值可以通过具有一组特定参数值的模 型来解释, 而异常值在任何情况下都不适合该模型。另一个必要的假设是可以从数据中最优地 估计所选模型的参数的程序是可用的。
来自[维基百科RANSAC]:
RANSAC 算法的输入是一组观测数据值、一个可以解释或拟合观测值的参数化模型以及一 些置信度参数。

RANSAC 通过迭代选择原始数据的随机子集来实现其目标。这些数据是假设的内点, 然后 对该假设进行如下测试:

  1. 模型适合假设的内点, 即模型的所有自由参数都是从内点重建的。
  2. 然后针对拟合模型对所有其他数据进行测试, 如果某个点与估计模型非常吻合, 则 也将其视为假设的内点。
  3. 如果足够多的点被分类为假设的内点, 则估计的模型相当好。
  4. 该模型是根据所有假设的内点重新估计的, 因为它仅是从一组假设的初始内点估计 的。
  5. 最后, 通过估计内点相对于模型的误差来评估模型。
    这个过程重复了固定的次数, 每次要么产生一个模型, 因为太少的点被分类为内点而被拒 绝, 要么产生一个带有相应误差度量的精炼模型。在后一种情况下, 如果精化模型的误差 低于上次保存的模型, 我们将保留它。

RANSAC 的一个优点是它能够对模型参数进行稳健的估计,即即使数据集中存在大量异常值,它也可以高度准确地估计参数。RANSAC 的一个缺点是计算这些参数所需的时间没有上限。当计算的迭代次数有限时,获得的解决方案可能不是最优的,甚至可能不是以良好方式拟合数据的解决方案。通过这种方式,RANSAC 提供了一种权衡;通过计算更多的迭代次数,可以增加生成合理模型的概率。RANSAC 的另一个缺点是它需要设置特定问题的阈值。

RANSAC 只能为特定数据集估计一个模型。对于存在两个(或更多)模型时的任何一种模型方法,RANSAC 可能无法找到其中任何一个。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-e6Ju3G0q-1658708347701)(https://pcl.readthedocs.io/projects/tutorials/en/pcl-1.12.0/_images/random_sample_example1.png)]

上面和下面的图片(来自[WikipediaRANSAC])显示了 RANSAC 算法在二维数据集上的简单应用。我们上面的图像是包含异常值和异常值的数据集的可视化表示。我们下边的图像以红色显示所有异常值,并以蓝色显示内部值。蓝线是 RANSAC 所做工作的结果。在这种情况下,我们试图拟合数据的模型是一条线,看起来它非常适合我们的数据。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GoTsm3NV-1658708347702)(https://pcl.readthedocs.io/projects/tutorials/en/pcl-1.12.0/_images/random_sample_example2.png)]

主要代码

#include <iostream>
#include <thread>

#include <pcl/console/parse.h>
#include <pcl/point_cloud.h> // for PointCloud
#include <pcl/common/io.h> // for copyPointCloud
#include <pcl/point_types.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/sample_consensus/sac_model_sphere.h>
#include <pcl/visualization/pcl_visualizer.h>

using namespace std::chrono_literals;

pcl::visualization::PCLVisualizer::Ptr
simpleVis (pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud)
{
  // --------------------------------------------
  // -----Open 3D viewer and add point cloud-----
  // --------------------------------------------
  pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
  viewer->setBackgroundColor (0, 0, 0);
  viewer->addPointCloud<pcl::PointXYZ> (cloud, "sample cloud");
  viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "sample cloud");
  //viewer->addCoordinateSystem (1.0, "global");
  viewer->initCameraParameters ();
  return (viewer);
}

int
main(int argc, char** argv)
{
  // initialize PointClouds
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr final (new pcl::PointCloud<pcl::PointXYZ>);

  // populate our PointCloud with points
  cloud->width    = 500;
  cloud->height   = 1;
  cloud->is_dense = false;
  cloud->points.resize (cloud->width * cloud->height);
  for (pcl::index_t i = 0; i < static_cast<pcl::index_t>(cloud->size ()); ++i)
  {
    if (pcl::console::find_argument (argc, argv, "-s") >= 0 || pcl::console::find_argument (argc, argv, "-sf") >= 0)
    {
      (*cloud)[i].x = 1024 * rand () / (RAND_MAX + 1.0);
      (*cloud)[i].y = 1024 * rand () / (RAND_MAX + 1.0);
      if (i % 5 == 0)
        (*cloud)[i].z = 1024 * rand () / (RAND_MAX + 1.0);
      else if(i % 2 == 0)
        (*cloud)[i].z =  sqrt( 1 - ((*cloud)[i].x * (*cloud)[i].x)
                                      - ((*cloud)[i].y * (*cloud)[i].y));
      else
        (*cloud)[i].z =  - sqrt( 1 - ((*cloud)[i].x * (*cloud)[i].x)
                                        - ((*cloud)[i].y * (*cloud)[i].y));
    }
    else
    {
      (*cloud)[i].x = 1024 * rand () / (RAND_MAX + 1.0);
      (*cloud)[i].y = 1024 * rand () / (RAND_MAX + 1.0);
      if( i % 2 == 0)
        (*cloud)[i].z = 1024 * rand () / (RAND_MAX + 1.0);
      else
        (*cloud)[i].z = -1 * ((*cloud)[i].x + (*cloud)[i].y);
    }
  }

  std::vector<int> inliers;

  // created RandomSampleConsensus object and compute the appropriated model
  pcl::SampleConsensusModelSphere<pcl::PointXYZ>::Ptr
    model_s(new pcl::SampleConsensusModelSphere<pcl::PointXYZ> (cloud));
  pcl::SampleConsensusModelPlane<pcl::PointXYZ>::Ptr
    model_p (new pcl::SampleConsensusModelPlane<pcl::PointXYZ> (cloud));
  if(pcl::console::find_argument (argc, argv, "-f") >= 0)
  {
    pcl::RandomSampleConsensus<pcl::PointXYZ> ransac (model_p);
    ransac.setDistanceThreshold (.01);
    ransac.computeModel();
    ransac.getInliers(inliers);
  }
  else if (pcl::console::find_argument (argc, argv, "-sf") >= 0 )
  {
    pcl::RandomSampleConsensus<pcl::PointXYZ> ransac (model_s);
    ransac.setDistanceThreshold (.01);
    ransac.computeModel();
    ransac.getInliers(inliers);
  }

  // copies all inliers of the model computed to another PointCloud
  pcl::copyPointCloud (*cloud, inliers, *final);

  // creates the visualization object and adds either our original cloud or all of the inliers
  // depending on the command line arguments specified.
  pcl::visualization::PCLVisualizer::Ptr viewer;
  if (pcl::console::find_argument (argc, argv, "-f") >= 0 || pcl::console::find_argument (argc, argv, "-sf") >= 0)
    viewer = simpleVis(final);
  else
    viewer = simpleVis(cloud);
  while (!viewer->wasStopped ())
  {
    viewer->spinOnce (100);
    std::this_thread::sleep_for(100ms);
  }
  return 0;
 }

代码逐行

以下源代码初始化了两个 PointCloud,并用点填充其中一个。这些点中的大多数根据模型放置在云中,但其中一小部分 (1/5) 被指定为任意位置。

// initialize PointClouds
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>::Ptr final (new pcl::PointCloud<pcl::PointXYZ>);

  // populate our PointCloud with points
  cloud->width    = 500;
  cloud->height   = 1;
  cloud->is_dense = false;
  cloud->points.resize (cloud->width * cloud->height);
  for (pcl::index_t i = 0; i < static_cast<pcl::index_t>(cloud->size ()); ++i)
  {
    if (pcl::console::find_argument (argc, argv, "-s") >= 0 || pcl::console::find_argument (argc, argv, "-sf") >= 0)
    {
      (*cloud)[i].x = 1024 * rand () / (RAND_MAX + 1.0);
      (*cloud)[i].y = 1024 * rand () / (RAND_MAX + 1.0);
      if (i % 5 == 0)
        (*cloud)[i].z = 1024 * rand () / (RAND_MAX + 1.0);
      else if(i % 2 == 0)
        (*cloud)[i].z =  sqrt( 1 - ((*cloud)[i].x * (*cloud)[i].x)
                                      - ((*cloud)[i].y * (*cloud)[i].y));
      else
        (*cloud)[i].z =  - sqrt( 1 - ((*cloud)[i].x * (*cloud)[i].x)
                                        - ((*cloud)[i].y * (*cloud)[i].y));
    }
    else
    {
      (*cloud)[i].x = 1024 * rand () / (RAND_MAX + 1.0);
      (*cloud)[i].y = 1024 * rand () / (RAND_MAX + 1.0);
      if( i % 2 == 0)
        (*cloud)[i].z = 1024 * rand () / (RAND_MAX + 1.0);
      else
        (*cloud)[i].z = -1 * ((*cloud)[i].x + (*cloud)[i].y);
    }
  }

接下来,我们创建一个整数向量,它可以存储来自 PointCloud 的内点的位置,现在我们可以使用来自输入云的平面或球体模型构建 RandomSampleConsensus 对象。

  std::vector<int> inliers;

  // created RandomSampleConsensus object and compute the appropriated model
  pcl::SampleConsensusModelSphere<pcl::PointXYZ>::Ptr
    model_s(new pcl::SampleConsensusModelSphere<pcl::PointXYZ> (cloud));
  pcl::SampleConsensusModelPlane<pcl::PointXYZ>::Ptr
    model_p (new pcl::SampleConsensusModelPlane<pcl::PointXYZ> (cloud));
  if(pcl::console::find_argument (argc, argv, "-f") >= 0)
  {
    pcl::RandomSampleConsensus<pcl::PointXYZ> ransac (model_p);
    ransac.setDistanceThreshold (.01);
    ransac.computeModel();
    ransac.getInliers(inliers);
  }
  else if (pcl::console::find_argument (argc, argv, "-sf") >= 0 )
  {
    pcl::RandomSampleConsensus<pcl::PointXYZ> ransac (model_s);
    ransac.setDistanceThreshold (.01);
    ransac.computeModel();
    ransac.getInliers(inliers);
  }

最后一段代码将所有适合我们模型的点复制到另一个云中,然后在查看器中显示该云或我们的原始云。

// copies all inliers of the model computed to another PointCloud
  pcl::copyPointCloud (*cloud, inliers, *final);

  // creates the visualization object and adds either our original cloud or all of the inliers
  // depending on the command line arguments specified.
  pcl::visualization::PCLVisualizer::Ptr viewer;
  if (pcl::console::find_argument (argc, argv, "-f") >= 0 || pcl::console::find_argument (argc, argv, "-sf") >= 0)
    viewer = simpleVis(final);
  else
    viewer = simpleVis(cloud);

bash执行result

$ ./random_sample_consensus

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值