7.1 布朗运动定义及构造


本章的第一部分发展了布朗运动的性质. 第7.1节, 我们定义了布朗运动,并研究其路径的连续性. 第7.2节, 我们证明了马氏性和一个相关的 0 − 1 0-1 01定律. 第7.3节, 我们定义了停时, 并证明了强马氏性. 第7.4节, 我们使用强马氏性来研究布朗运动的路径性质. 第7.5节, 我们介绍了一些与布朗运动相关的鞅, 并利用它们来获取关于退出分布和退出时的信息. 第7.6节, 我们证明Ito公式的三个版本.

定义7.1.A .不要求初值为0的布朗运动]一维布朗运动是一个实值过程 B t , t ≥ 0 B_{t}, t \geq 0 Bt,t0, 有以下性质:\
(a) 若 t 0 < t 1 < … < t n t_{0}<t_{1}<\ldots<t_{n} t0<t1<<tn , 则 B ( t 0 ) , B ( t 1 ) − B ( t 0 ) , … , B ( t n ) − B ( t n − 1 ) B\left(t_{0}\right), B\left(t_{1}\right)-B\left(t_{0}\right), \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right) B(t0),B(t1)B(t0),,B(tn)B(tn1)独立.
(b) 若 s , t ≥ 0 s, t \geq 0 s,t0 , 则
P ( B ( s + t ) − B ( s ) ∈ A ) = ∫ A ( 2 π t ) − 1 / 2 exp ⁡ ( − x 2 / 2 t ) d x P(B(s+t)-B(s) \in A)=\int_{A}(2 \pi t)^{-1 / 2} \exp \left(-x^{2} / 2 t\right) d x P(B(s+t)B(s)A)=A(2πt)1/2exp(x2/2t)dx
( c) t → B t t \rightarrow B_{t} tBt几乎必然连续(几乎所有的轨道连续).

remark (a) B t B_t Bt有独立的增量. (b) 增量 B ( s + t ) − B ( s ) B(s+t)-B(s) B(s+t)B(s)是均值为0,方差为t的正态分布. 联系物理中布朗运动的设定, 可以看到这里的定义是合理的:
与物理中布朗运动的联系: (a)和(b)可以合理地指出花粉粒的运动是由于数百万的水分子撞击造成的,因为:

  1. 由于分子运动的独立性和无规则性, 认为质点在不同时间内受到的碰撞是独立的, 故所产生的位移也是独立的. 2. B ( t ) B(t) B(t) 表示质点在时刻 t t t 的位置, 则 B ( t ) B(t) B(t) 也表示质点直到 t t t 所作的位移, 因此在时间 ( s , t ) (s, t) (s,t) 内, 它所做的位移是 B ( t ) − B ( s ) B(t)-B(s) B(t)B(s), 由于在时间 ( s , t ) (s, t) (s,t) 内质点受到周围分子的大量碰撞, 每次碰撞都产生一个小的位移, 故 B ( t ) − B ( s ) B(t)-B(s) B(t)B(s) 是大量小位移的和, 由中 心极限定理它服从正态分布,

  2. 介质处于平衡状态, 因此质点在一小区间上 位移的统计规律只与区间长度有关, 而与开始观察的时刻无关.

1. 布朗运动的定义

1.1 平移不变性

性质7.1.B. 平移不变性(Translation invariance) (i) { B t − B 0 , t ≥ 0 } \left\{B_{t}-B_{0}, t \geq 0\right\} {BtB0,t0} B 0 B_{0} B0 独立, (ii) 与初值是 B 0 = 0 B_{0}=0 B0=0的布朗运动同分布.

证明: (i) 令 A 1 = σ ( B 0 ) \mathcal{A}_{1}=\sigma\left(B_{0}\right) A1=σ(B0), A 2 \mathcal{A}_{2} A2是具有以下形式的事件
{ B ( t 1 ) − B ( t 0 ) ∈ A 1 , … , B ( t n ) − B ( t n − 1 ) ∈ A n } . \left\{B\left(t_{1}\right)-B\left(t_{0}\right) \in A_{1}, \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right) \in A_{n}\right\} . {B(t1)B(t0)A1,,B(tn)B(tn1)An}.
A i \mathcal{A}_{i} Ai是独立的 π \pi π-类, 故由定理2.1.6 ( π − λ \pi-\lambda πλ定理)可得 σ ( A i ) \sigma(\mathcal{A}_{i}) σ(Ai)独立, 综合可得 { B t − B 0 , t ≥ 0 } \left\{B_{t}-B_{0}, t \geq 0\right\} {BtB0,t0} B 0 B_{0} B0 独立.

(ii) 有限维分布的 n = 1 n=1 n=1时, 分布相同, 由(i)可得增量独立, 故对 n > 1 n>1 n>1时, 分布也相同.

1.2 自相似性-尺度不变性

性质7.1.C. 自相似性-尺度不变性(The Brownian scaling relation) 设 c ≠ 0 c \neq 0 c=0 为常数, 则 c − 1 w c 2 t c^{-1} w_{c^{2} t} c1wc2t为布朗运动.
(i) 若 B 0 = 0 B_{0}=0 B0=0, 则对 ∀ t > 0 \forall t>0 t>0, { B s t , s ≥ 0 } = d { t 1 / 2 B s , s ≥ 0 } \{B_{s t}, s \geq 0\} \stackrel{d}{=}\{t^{1 / 2} B_{s}, s \geq 0\} {Bst,s0}=d{t1/2Bs,s0}.(取 c = t c=\sqrt{t} c=t )
(ii) w ^ t : = { 0 , t = 0 t w t − 1 , t > 0 \hat{w}_{t}:= \begin{cases}0, & t=0 \\ t w_{t^{-1}}, & t>0\end{cases} w^t:={0,twt1,t=0t>0 是布朗运动.(取 c = 1 / t c=1/{t} c=1/t)

Remark c c c − 1 -1 1, { − B t , t ≥ 0 } \left\{-B_{t}, t \geq 0\right\} {Bt,t0} 是布朗运动.

证明: (i) 只要证明 s 1 < … < s n s_{1}<\ldots<s_{n} s1<<sn, 随机变量族有相同的有限维分布
( B s 1 t , … , B s n t ) = d ( t 1 / 2 B s 1 , … t 1 / 2 B s n ) \left(B_{s_{1} t}, \ldots, B_{s_{n} t}\right) \stackrel{d}{=}\left(t^{1 / 2} B_{s_{1}}, \ldots t^{1 / 2} B_{s_{n}}\right) (Bs1t,,Bsnt)=d(t1/2Bs1,t1/2Bsn)

n = 1 n=1 n=1, 由于 t 1 / 2 t^{1 / 2} t1/2乘以均值为0方差为 s s s的正态分布是均值为0方差为 s t st st的正态分布, 结论成立. 当 n > 1 n>1 n>1, 由增量的独立性可得.

(ii) 对任意 n n n t 1 , ⋯   , t n , ( w ^ t 1 , ⋯   , w ^ t n ) t_{1}, \cdots, t_{n},\left(\hat{w}_{t_{1}}, \cdots, \hat{w}_{t_{n}}\right) t1,,tn,(w^t1,,w^tn) 为Gauss 变量, 且 E [ w ^ t w ^ s ] = s ∧ t E\left[\hat{w}_{t} \hat{w}_{s}\right]= s \wedge t E[w^tw^s]=st. 根据布朗运动的等价定义7.1.F, 只需证 w ^ t \hat{w}_{t} w^t 的样本轨道几乎必然连续. 又 t ↦ w ^ t t \mapsto \hat{w}_{t} tw^t ( 0 , ∞ ) (0, \infty) (0,) 上几乎必然连续. 故只需证明 t ↦ w ^ t t \mapsto \hat{w}_{t} tw^t 在 0 点连续.

由于 ∀ p > 2 , α ∈ ( p − 1 , 2 − 1 ) \forall p>2, \alpha \in\left(p^{-1}, 2^{-1}\right) p>2,α(p1,21), 有
∫ 0 1 ∫ 0 1 1 ∣ t − s ∣ 1 + p α E [ ∣ w ^ t − w ^ s ∣ p ] d s d t ≤ C ∫ 0 1 ∫ 0 1 ∣ t − s ∣ − 1 + p ( 1 2 − α ) d t d s < ∞ \begin{aligned} & \int_{0}^{1} \int_{0}^{1} \frac{1}{|t-s|^{1+p \alpha}} E\left[\left|\hat{w}_{t}-\hat{w}_{s}\right|^{p}\right] d s d t \\ \leq & C \int_{0}^{1} \int_{0}^{1}|t-s|^{-1+p\left(\frac{1}{2}-\alpha\right)} d t d s < \infty \end{aligned} 0101ts1+pα1E[w^tw^sp]dsdtC0101ts1+p(21α)dtds<
故用Kolmogorov的连续性准则, t ↦ w ^ t t \mapsto \hat{w}_{t} tw^t [ 0 , 1 ] [0,1] [0,1] 上有连续修正.

由于互为修正是指 ∀ t ∈ I , X t = Y t , a . s . \forall t \in I, X_{t}=Y_{t}, a . s . tI,Xt=Yt,a.s., , 故在0点修正前后一致, 而 t ↦ w ^ t t \mapsto \hat{w}_{t} tw^t ( 0 , 1 ] (0,1] (0,1] 上连续, 故修正前后也一致, 因此 t ↦ w ^ t t \mapsto \hat{w}_{t} tw^t 本身在 [ 0 , 1 ] [0,1] [0,1] 上连续.

2. 等价定义

2.1 高斯向量及其性质

本节主要给出布朗运动的等价定义(定义7.1.F), 即期望为0协方差为 s ∧ t s\wedge t st的连续高斯过程是布朗运动, 由此给出布朗运动的有限维分布(定理7.1.G)以及布朗运动的 n n n阶矩(定理7.1.H).

定义7.1.D .Gauss向量-特征函数 称一个 d d d-维随机向量 ξ : = ( ξ 1 , ⋯   , ξ d ) ∗ \xi:=\left(\xi_{1}, \cdots, \xi_{d}\right)^{*} ξ:=(ξ1,,ξd)是具有参数 ( m , A ) (m, A) (m,A) 的Gauss向量, 记为 ξ ∼ N ( m , A ) \xi \sim N(m, A) ξN(m,A). 如果其特征函数 φ \varphi φ 有表达式
φ ( t ) = exp ⁡ ( i m ∗ t − 1 2 t ∗ A t ) , t ∈ R d , \varphi(t)=\exp \left(i m^{*} t-\frac{1}{2} t^{*} A t\right), t \in \mathbb{R}^{d}, φ(t)=exp(imt21tAt),tRd,
其中 m ∈ R d , A m \in \mathbb{R}^{d}, A mRd,A d × d d \times d d×d 对称非负定矩阵.

Gauss向量的密度函数: 称一个 d d d-维随机向量 ξ : = ( ξ 1 , ⋯   , ξ d ) ∗ \xi:=\left(\xi_{1}, \cdots, \xi_{d}\right)^{*} ξ:=(ξ1,,ξd)是具有参数 ( m , A ) (m, A) (m,A) 的Gauss向量, 若 d d d 维随机向量 X = ( X 1 , X 2 , … , X d ) ′ X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)^{\prime} X=(X1,X2,,Xd) 的联合概率密度为
f ( x 1 , … , x p ) = 1 ( 2 π ) d ∣ A ∣ 1 / 2 exp ⁡ { − 1 2 ( x − m ) ′ A − 1 ( x − m ) } f\left(x_{1}, \ldots, x_{p}\right)=\frac{1}{\sqrt{(2 \pi)^{d}}|A|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-m)^{\prime} A^{-1}(x-m)\right\} f(x1,,xp)=(2π)d A1/21exp{21(xm)A1(xm)}

(引理7.1.D. m m m是高斯向量的期望, A A A是高斯向量的协方差矩阵) 设 ξ = ( ξ 1 , ⋯   , ξ d ) ∼ N ( m , A ) \xi=\left(\xi_{1}, \cdots, \xi_{d}\right) \sim N(m, A) ξ=(ξ1,,ξd)N(m,A). 则 m i = E [ ξ i ] , a i j = E [ ( ξ i − m i ) ( ξ j − m j ) ] m_{i}=E\left[\xi_{i}\right], a_{i j}=E\left[\left(\xi_{i}-m_{i}\right)\left(\xi_{j}-m_{j}\right)\right] mi=E[ξi],aij=E[(ξimi)(ξjmj)].

[(引理7.1.E. 高斯向量的线性组合是高斯向量)] ξ ∼ N ( m , A ) , Q \xi\sim N(m, A), Q ξN(m,A),Q k × d k \times d k×d矩阵. 令 η : = b + Q ξ \eta:=b+Q \xi η:=b+Qξ. 有 η ∈ N ( b + Q m , Q A Q ∗ ) \eta \in N\left(b+Q m, Q A Q^{*}\right) ηN(b+Qm,QAQ)

布朗运动的定义中并没有假定 B ( 0 ) = 0 B(0)=0 B(0)=0, 因此称之为始于 x x x 的 Brown运动, 所以有时为了强调起始点, 也记为 { B x ( t ) } \left\{B^{x}(t)\right\} {Bx(t)}. 由布朗运动的平移不变性, 可得
B x ( t ) − x = B 0 ( t ) B^{x}(t)-x=B^{0}(t) Bx(t)x=B0(t)
因此 B x ( t ) B^{x}(t) Bx(t) x + B 0 ( t ) x+B^{0}(t) x+B0(t) 是相同的, 研究始于 0 的Brown运动即可, 如不加说明, Brown 运动就是指始于0的Brown 运动. 因此用高斯过程给出起始点为0布朗运动的一个等价定义.

2.2 等价定义的证明

等价定义7.1.F.初值 B 0 = 0 B_0=0 B0=0的布朗运动 初值 B 0 = 0 B_0=0 B0=0的布朗运动 B t , t ≥ 0 B_t,t\geq 0 Bt,t0, 是一个满足以下条件的实值过程\
(a’) B ( t ) B(t) B(t)是一个高斯过程(即所有的有限维分布是多元高斯分布).\
(b’) E B s = 0 E B_{s}=0 EBs=0, E B s B t = s ∧ t E B_{s} B_{t}=s \wedge t EBsBt=st. (c’) t → B t t \rightarrow B_{t} tBt几乎必然连续.

证明 必要性. (a’) 证明对任意的 t 1 < t 2 < ⋯ < t n , ( B t 1 , ⋯   , B t n ) t_{1}<t_{2}<\cdots<t_{n},\left(B_{t_{1}}, \cdots, B_{t_{n}}\right) t1<t2<<tn,(Bt1,,Btn) 服从正态分布. 由独立增量 性
( B t 1 , B t 2 − B t 1 , ⋯   , B t n − B t n − 1 ) \left(B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right) (Bt1,Bt2Bt1,,BtnBtn1)
服从正态分布. 由引理7.1.C可得 ( B t 1 , ⋯   , B t n ) \left(B_{t_{1}}, \cdots, B_{t_{n}}\right) (Bt1,,Btn) 服从正态分布.

(b’) E B t = 0 \mathbb{E} B_{t}=0 EBt=0, 对任意的 t ≥ s ≥ 0 t \geq s \geq 0 ts0,
E B t B s = E ( B t − B s ) B s + E B s 2 = s \mathbb{E} B_{t} B_{s}=\mathbb{E}\left(B_{t}-B_{s}\right) B_{s}+\mathbb{E} B_{s}^{2}=s EBtBs=E(BtBs)Bs+EBs2=s.

充分性: (a) 增量独立性, 即: 对任意的 t 1 < t 2 < ⋯ < t n t_{1}<t_{2}<\cdots<t_{n} t1<t2<<tn,
( B t 1 , B t 2 − B t 1 , ⋯   , B t n − B t n − 1 ) \left(B_{t_{1}}, B_{t_{2}}-B_{t_{1}}, \cdots, B_{t_{n}}-B_{t_{n-1}}\right) (Bt1,Bt2Bt1,,BtnBtn1)
相互独立. 由于它们服从正态分布, 所以只需要证明不相关性. 对任意的 i < j i<j i<j,
E ( B t i − B t i − 1 ) ( B t j − B t j − 1 ) = E B t i B t j − E B t i B t j − 1 − E B t i − 1 B t j + E B t i − 1 B t j − 1 = t i − t i − t i − 1 + t i − 1 = 0 \begin{aligned} \mathbb{E}\left(B_{t_{i}}-B_{t_{i-1}}\right)\left(B_{t_{j}}-B_{t_{j-1}}\right)&=\mathbb{E} B_{t_{i}} B_{t_{j}}-\mathbb{E} B_{t_{i}} B_{t_{j-1}}-\mathbb{E} B_{t_{i-1}} B_{t_{j}}+\mathbb{E} B_{t_{i-1}} B_{t_{j-1}}\\ &=t_{i}-t_{i}-t_{i-1}+t_{i-1}=0 \end{aligned} E(BtiBti1)(BtjBtj1)=EBtiBtjEBtiBtj1EBti1Btj+EBti1Btj1=tititi1+ti1=0

(b) 对任意的 t > s , B t − B s t>s, B_{t}-B_{s} t>s,BtBs 服从正态分布, 均值为 0 , 方差为
E ( B t − B s ) 2 = E B t 2 − 2 E B t B s + E B s 2 = t − s \mathbb{E}\left(B_{t}-B_{s}\right)^{2}=\mathbb{E} B_{t}^{2}-2 \mathbb{E} B_{t} B_{s}+\mathbb{E} B_{s}^{2}=t-s E(BtBs)2=EBt22EBtBs+EBs2=ts

2.3 布朗运动的有限维分布

定理7.1.G.布朗运动的有限维分布 初始值为 x x x 的布朗运动的有限维分布为
∫ − ∞ x 1 p t 1 ( x , y 1 ) d y 1 ∫ − ∞ x 2 p t 2 − t 1 ( y 1 , y 2 ) d y 2 ⋯ ∫ − ∞ x n p t n − t n − 1 ( y n − 1 , y n ) d y n \int_{-\infty}^{x_{1}} p_{t_{1}}\left(x, y_{1}\right) \mathrm{d} y_{1} \int_{-\infty}^{x_{2}} p_{t_{2}-t_{1}}\left(y_{1}, y_{2}\right) \mathrm{d} y_{2} \cdots \int_{-\infty}^{x_{n}} p_{t_{n}-t_{n-1}}\left(y_{n-1}, y_{n}\right) \mathrm{d} y_{n} x1pt1(x,y1)dy1x2pt2t1(y1,y2)dy2xnptntn1(yn1,yn)dyn

证明 如果过程从 x x x 开始, B ( 0 ) = x B(0)=x B(0)=x, 则 B ( t ) ∼ N ( x , t ) B(t) \sim N(x, t) B(t)N(x,t), 于是
P x { B ( t ) ∈ ( a , b ) } = ∫ a b 1 2 π t e − ( u − r ) 2 2 t   d y . P_{x}\{B(t) \in(a, b)\}=\int_{a}^{b} \frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-\frac{(u-r)^{2}}{2 t}} \mathrm{~d} y . Px{B(t)(a,b)}=ab2πt 1e2t(ur)2 dy.
这里概率 P x P_{x} Px 的下标 x x x 表示过程始于 x x x 积分号中的函数
p t ( x , y ) = 1 2 π t e − ( y − x ) 2 2 t p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-\frac{(y-x)^{2}}{2 t}} pt(x,y)=2πt 1e2t(yx)2
称为 Brown运动的转移概率密度. 利用独立增量性以及转移概率密度, 可以 计算任意 Brown 运动的有限维分布 P x { B ( t 1 ) ⩽ x 1 , ⋯   , B ( t n ) ⩽ x n } P_{x}\left\{B\left(t_{1}\right) \leqslant x_{1}, \cdots, B\left(t_{n}\right) \leqslant x_{n}\right\} Px{B(t1)x1,,B(tn)xn}
∫ − ∞ x 1 p t 1 ( x , y 1 ) d y 1 ∫ − ∞ x 2 p t 2 − t 1 ( y 1 , y 2 ) d y 2 ⋯ ∫ − ∞ x n p t n − t n − 1 ( y n − 1 , y n ) d y n \int_{-\infty}^{x_{1}} p_{t_{1}}\left(x, y_{1}\right) \mathrm{d} y_{1} \int_{-\infty}^{x_{2}} p_{t_{2}-t_{1}}\left(y_{1}, y_{2}\right) \mathrm{d} y_{2} \cdots \int_{-\infty}^{x_{n}} p_{t_{n}-t_{n-1}}\left(y_{n-1}, y_{n}\right) \mathrm{d} y_{n} x1pt1(x,y1)dy1x2pt2t1(y1,y2)dy2xnptntn1(yn1,yn)dyn

习题7.1.1 给定 s < t s<t s<t, 计算 P ( B ( s ) > 0 , B ( t ) > 0 ) P(B(s)>0, B(t)>0) P(B(s)>0,B(t)>0).

证明: 由定义7.1.F可得布朗运动是高斯过程, 故
P ( B ( s ) > 0 , B ( t ) − B ( s ) > 0 ) = P ( B ( s ) > 0 ) P ( B ( t ) − B ( s ) > 0 ) = ∫ 0 ∞ 1 2 π s exp ⁡ ( − x 2 2 s ) ∫ 0 ∞ 1 2 π ( t − s ) exp ⁡ ( − x 2 2 ( t − s ) ) = ∫ 0 ∞ Φ ( a t − s ) ϕ ( a s ) d a s = ∫ 0 ∞ Φ ( b a ) ϕ ( a ) d a \begin{aligned} &P(B(s)>0, B(t)-B(s)>0)=P(B(s)>0) P(B(t)-B(s)>0) \\ &=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi s}} \exp \left(-\frac{x^{2}}{2 s}\right) \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi(t-s)}} \exp \left(-\frac{x^{2}}{2(t-s)}\right)\\ &=\int_{0}^{\infty} \Phi\left(\frac{a}{\sqrt{t-s}}\right) \phi\left(\frac{a}{\sqrt{s}}\right) \mathrm{d} \frac{a}{\sqrt{s}}=\int_{0}^{\infty} \Phi(b a) \phi(a) \mathrm{d} a \end{aligned} P(B(s)>0,B(t)B(s)>0)=P(B(s)>0)P(B(t)B(s)>0)=02πs 1exp(2sx2)02π(ts) 1exp(2(ts)x2)=0Φ(ts a)ϕ(s a)ds a=0Φ(ba)ϕ(a)da
其中, Φ ( ⋅ ) \Phi(\cdot) Φ(), ϕ ( ⋅ ) \phi(\cdot) ϕ() 是标准高斯变量的密度和分布函数,
b : = s / t − s b:=\sqrt{{s}/{t-s}} b:=s/ts .

I ( b ) I(b) I(b)表示以上积分, 由Leibniz规则可得
I ( 0 ) = 1 4 , ∂ b I ( b ) = ∫ 0 ∞ a ϕ ( b a ) ϕ ( a ) d a = 1 2 π 1 + b 2 ∫ 0 ∞ a e − 1 + b 2 2 a 2   d a = 1 2 π 1 1 + b 2 I(0)=\frac{1}{4}, \quad \partial_{b} I(b)=\int_{0}^{\infty} a \phi(b a) \phi(a) \mathrm{d} a=\frac{1}{2 \pi \sqrt{1+b^{2}}} \int_{0}^{\infty} a \mathrm{e}^{-\frac{1+b^{2}}{2} a^{2}} \mathrm{~d} a=\frac{1}{2 \pi} \frac{1}{1+b^{2}} I(0)=41,bI(b)=0aϕ(ba)ϕ(a)da=2π1+b2 10ae21+b2a2 da=2π11+b21
重新积分可得原式为
I ( b ) = I ( 0 ) + 1 2 π ∫ 0 b d c 1 + c 2 = 1 4 + 1 2 π tan ⁡ − 1 ( s / t ) = 1 4 + 1 2 π sin ⁡ − 1 ( s t ) I(b)=I(0)+\frac{1}{2 \pi} \int_{0}^{b} \frac{\mathrm{d} c}{1+c^{2}}=\frac{1}{4}+\frac{1}{2 \pi} \tan ^{-1}(\sqrt{s / t})=\frac{1}{4}+\frac{1}{2 \pi} \sin ^{-1}\left(\sqrt{\frac{s}{t}}\right) I(b)=I(0)+2π10b1+c2dc=41+2π1tan1(s/t )=41+2π1sin1(ts )

2.4 布朗运动矩的计算

定理7.1.H (布朗运动矩的计算) 定理. 设 B t B_{t} Bt 是以 0 为起点的布朗运动, 则
E [ B t 2 k + 1 ] = 0 , E [ B t 2 k ] = ( 2 k ) ! t k 2 k k ! = ( 2 k − 1 ) ! ! t k E\left[B_{t}^{2 k+1}\right]=0, \quad E\left[B_{t}^{2 k}\right]=\frac{(2 k) ! t^{k}}{2^{k} k !}=(2 k-1) ! ! t^{k} E[Bt2k+1]=0,E[Bt2k]=2kk!(2k)!tk=(2k1)!!tk

证明:方法一. 由定义7.1.F可得布朗运动 B t B_{t} Bt 的特征函数为
E [ e i u B t ] = e − 1 2 u 2 t E\left[e^{i u B_{t}}\right]=e^{-\frac{1}{2} u^{2} t} E[eiuBt]=e21u2t
由于 e − 1 2 u 2 t = ∑ k = 0 ∞ ( − 1 ) k t k 2 k k ! u 2 k e^{-\frac{1}{2} u^{2} t}=\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{k}}{2^{k} k !} u^{2 k} e21u2t=k=02kk!(1)ktku2k, 可得
E [ e i u B t ] = E [ ∑ k = 0 ∞ ( i B t ) k k ! u k ] = ∑ k = 0 ∞ i k E [ B t k ] k ! u k = ∑ k = 0 ∞ ( − 1 ) k t k 2 k k ! u 2 k E\left[e^{i u B_{t}}\right]=E\left[\sum_{k=0}^{\infty} \frac{\left(i B_{t}\right)^{k}}{k !} u^{k}\right]=\sum_{k=0}^{\infty} \frac{i^{k} E\left[B_{t}^{k}\right]}{k !} u^{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k} t^{k}}{2^{k} k !} u^{2 k} E[eiuBt]=E[k=0k!(iBt)kuk]=k=0k!ikE[Btk]uk=k=02kk!(1)ktku2k

方法二. 直接计算有
E [ f ( B t ) ] = ∫ R f ( B t ) P 0 [ B t ∈ d x ] = ∫ R f ( x ) p ( t , 0 , x ) d x = ∫ R f ( x ) 1 2 π t e − x 2 2 t d x E [f (B_{t})] =\int_{R} f (B_{t} ) P^{0}[B_{t} \in \mathrm{d} x]=\int_{R} f(x) p(t, 0, x) \mathrm{d} x=\int_{R} f(x) \frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} \mathrm{d} x E[f(Bt)]=Rf(Bt)P0[Btdx]=Rf(x)p(t,0,x)dx=Rf(x)2πt 1e2tx2dx
而取 f ( x ) = x k f(x)=x^{k} f(x)=xk, 有
E [ B t k ] = 1 2 π t ∫ R x k e − x 2 2 t   d x E\left[B_{t}^{k}\right]=\frac{1}{\sqrt{2 \pi t}} \int_{\boldsymbol{R}} x^{k} e^{-\frac{x^{2}}{2 t}} \mathrm{~d} x E[Btk]=2πt 1Rxke2tx2 dx
于是当 k k k 为奇数时, E [ B t k ] = 0 E\left[B_{t}^{k}\right]=0 E[Btk]=0; 当 k k k 为偶数时,
E [ B t 2 k ] = 2 2 π t ∫ 0 ∞ x 2 k e − x 2 2 t   d x = 2 π ∫ 0 ∞ ( 2 t ) k s k e − s 1 2 s − 1 2   d s = 2 k t k π Γ ( k + 1 2 ) = 2 k t k ( k − 1 2 ) ( k − 3 2 ) ⋯ 1 2 = ( 2 k − 1 ) ! ! t k = ( 2 k ) ! 2 k k ! t k . \begin{aligned} E\left[B_{t}^{2 k}\right] &=\frac{2}{\sqrt{2 \pi t}} \int_{0}^{\infty} x^{2 k} e^{-\frac{x^{2}}{2 t}} \mathrm{~d} x \\ &=\frac{2}{\sqrt{\pi}} \int_{0}^{\infty}(2 t)^{k} s^{k} e^{-s} \frac{1}{2} s^{-\frac{1}{2}} \mathrm{~d} s \\ &=\frac{2^{k} t^{k}}{\sqrt{\pi}} \Gamma\left(k+\frac{1}{2}\right) \\ &=2^{k} t^{k}\left(k-\frac{1}{2}\right)\left(k-\frac{3}{2}\right) \cdots \frac{1}{2} \\ &=(2 k-1) ! ! t^{k} =\frac{(2 k) !}{2^{k} k !} t^{k} . \end{aligned} E[Bt2k]=2πt 20x2ke2tx2 dx=π 20(2t)kskes21s21 ds=π 2ktkΓ(k+21)=2ktk(k21)(k23)21=(2k1)!!tk=2kk!(2k)!tk.
方法三. 设 β k ( t ) = E [ B t k ] \beta_{k}(t)=E[B_{t}^{k}] βk(t)=E[Btk], 则
d B t k = k B t k − 1   d B t + 1 2 k ( k − 1 ) B t k − 2   d t (  It o ˆ  公式  ) ⇒ B t k = k ∫ 0 t B s k − 1   d B s + 1 2 k ( k − 1 ) ∫ 0 t B s k − 2   d s ⇒ β k ( t ) = 1 2 k ( k − 1 ) ∫ 0 t β k − 2 ( s ) d s ( E [ ∫ 0 t f   d B s ] = 0 ) . \begin{aligned} & \mathrm{d} B_{t}^{k}=k B_{t}^{k-1} \mathrm{~d} B_{t}+\frac{1}{2} k(k-1) B_{t}^{k-2} \mathrm{~d} t \quad(\text { Itô 公式 }) \\ \Rightarrow & B_{t}^{k}=k \int_{0}^{t} B_{s}^{k-1} \mathrm{~d} B_{s}+\frac{1}{2} k(k-1) \int_{0}^{t} B_{s}^{k-2} \mathrm{~d} s \\ \Rightarrow & \beta_{k}(t)=\frac{1}{2} k(k-1) \int_{0}^{t} \beta_{k-2}(s) \mathrm{d} s \quad\left(E\left[\int_{0}^{t} f \mathrm{~d} B_{s}\right]=0\right) . \end{aligned} dBtk=kBtk1 dBt+21k(k1)Btk2 dt( Itoˆ 公式 )Btk=k0tBsk1 dBs+21k(k1)0tBsk2 dsβk(t)=21k(k1)0tβk2(s)ds(E[0tf dBs]=0).
于是
β 2 k − 1 = β 2 k − 3 = ⋯ = B 1 = 0 \beta_{2 k-1}=\beta_{2 k-3}=\cdots=B_{1}=0 β2k1=β2k3==B1=0归纳法可得 β 2 k = ( 2 k ) ! 2 k k ! t k \beta_{2 k}=\frac{(2 k) !}{2^{k} k !} t^{k} β2k=2kk!(2k)!tk

习题 7.1.2 计算 E ( B 1 2 B 2 B 3 ) E\left(B_{1}^{2} B_{2} B_{3}\right) E(B12B2B3).

证明:利用定理7.1.H可得,
E ( B 1 2 B 2 B 3 ) = E ( B 1 2 ( B 2 − B 1 + B 1 ) ( B 3 − B 2 + B 2 − B 1 + B 1 ) ) = E ( B 1 3 ( B 3 − B 2 ) + B 1 3 ( B 2 − B 1 ) + B 1 4 + B 1 ( B 2 − B 1 ) ( B 3 − B 2 ) + B 1 ( B 2 − B 1 ) 2 + B 1 2 ) = 4 \begin{aligned} E\left(B_{1}^{2} B_{2} B_{3}\right)=& E\left(B_{1}^{2}\left(B_{2}-B_{1}+B_{1}\right)\left(B_{3}-B_{2}+B_{2}-B_{1}+B_{1}\right)\right) \\ =& E\left(B_{1}^{3}\left(B_{3}-B_{2}\right)+B_{1}^{3}\left(B_{2}-B_{1}\right)+B_{1}^{4}\right.\\ &\left.+B_{1}\left(B_{2}-B_{1}\right)\left(B_{3}-B_{2}\right)+B_{1}\left(B_{2}-B_{1}\right)^{2}+B_{1}^{2}\right) =4 \end{aligned} E(B12B2B3)==E(B12(B2B1+B1)(B3B2+B2B1+B1))E(B13(B3B2)+B13(B2B1)+B14+B1(B2B1)(B3B2)+B1(B2B1)2+B12)=4

2.3 布朗运动关于时间的积分

习题7.1.3 (布朗运动关于时间的积分) W = ∫ 0 t B s d s W=\int_{0}^{t} B_{s} d s W=0tBsds. 证明 W ∼ N ( 0 , t 3 / 3 ) W \sim N\left(0, t^{3} / 3\right) WN(0,t3/3).

证明:对 n ≥ 1 n \geq 1 n1, 令 Δ s : = t / n \Delta s:=t / n Δs:=t/n, 对 k = 0 , … , n − 1 k=0, \ldots, n-1 k=0,,n1, 令 s k : = k Δ s s_{k}:=k \Delta s sk:=kΔs. 考虑 W = ∫ 0 t B s d s W=\int_{0}^{t} B_{s} d s W=0tBsds的黎曼和逼近:
W ( n ) = Δ s ∑ k = 0 n − 1 B ( s k ) . W^{(n)}=\Delta s \sum_{k=0}^{n-1} B\left(s_{k}\right) . W(n)=Δsk=0n1B(sk).
n → ∞ n \rightarrow \infty n, 有 W ( n ) → W W^{(n)} \rightarrow W W(n)W, 故 W ( n ) W^{(n)} W(n)是高斯过程, 由引理7.1.J(见下)极限是高斯变量.

E W ( n ) = 0 \mathrm{E} W^{(n)}=0 EW(n)=0, 由于 Cov ⁡ ( B ( s k ) , B ( s j ) ) = min ⁡ { s k , s j } \operatorname{Cov}\left(B\left(s_{k}\right), B\left(s_{j}\right)\right)=\min \left\{s_{k}, s_{j}\right\} Cov(B(sk),B(sj))=min{sk,sj},
E ( W ( n ) ) 2 = t 2 n 2 ( t n 2 3 − t n 2 + t 6 ) → t 3 3 \mathrm{E}\left(W^{(n)}\right)^{2}=\frac{t^{2}}{n^{2}}\left(\frac{t n^{2}}{3}-\frac{t n}{2}+\frac{t}{6}\right) \rightarrow \frac{t^{3}}{3} E(W(n))2=n2t2(3tn22tn+6t)3t3
W ∼ N ( 0 , t 3 / 3 ) W \sim N\left(0, t^{3} / 3\right) WN(0,t3/3).

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小行星-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值