布朗运动 1 | 基本概念与性质

5.1 布朗运动概念

定义:若一个随机过程 { X ( t ) , t ≥ 0 } \{X(t),t\ge0\} {X(t),t0} 满足

  1. X ( t ) X(t) X(t) 是独立增量过程;
  2. ∀ s , t ≥ 0 , X ( t + s ) − X ( s ) ∼ N ( 0 , c 2 t ) \forall s,t\ge0, X(t+s)-X(s)\sim {\mathcal N}(0,c^2t) s,t0,X(t+s)X(s)N(0,c2t)
  3. X ( t ) X(t) X(t) 关于 t t t 是连续函数;

则称 X ( t ) X(t) X(t) 是布朗运动或维纳过程。

可以验证 R ( t 1 , t 2 ) = E [ X ( t 1 ) X ( t 2 ) ] = c 2 ( t 1 ∧ t 2 ) R(t_1,t_2) = {\mathbb E}[X(t_1)X(t_2)]=c^2(t_1\wedge t_2) R(t1,t2)=E[X(t1)X(t2)]=c2(t1t2),所以布朗运动是非平稳过程

5.2 正态分布相关理论

5.2.1 柯西分布与高斯随机变量

问题 1:求 Z = X / Y Z=X/Y Z=X/Y 的概率分布与分布密度函数。

定理 5.1:设 X 1 , X 2 X_1,X_2 X1,X2 是独立的均值为 0 0 0,方差为 1 1 1 的正态分布随机变量,则 X 1 / ∣ X 2 ∣ X_1/|X_2| X1/X2 服从 Cauchy 分布,分布密度函数为: f ( x ) = 1 / π ( 1 + x 2 ) , − ∞ < x < ∞ f(x)=1/\pi(1+x^2), -\infty < x < \infty f(x)=1/π(1+x2),<x<,相应的概率分布函数为 F ( x ) = 1 / 2 + π − 1 arctan ⁡ x , − ∞ < x < ∞ F(x)=1/2 + \pi^{-1}\arctan x, -\infty < x < \infty F(x)=1/2+π1arctanx,<x<

5.2.2 区域分布与互相关系数的关系

定义 sin ⁡ α = E [ X Y ] E [ X 2 ] E [ Y 2 ] = r \sin \alpha = \frac{{\mathbb E}[XY]}{\sqrt{{\mathbb E}[X^2]{\mathbb E}[Y^2]}}=r sinα=E[X2]E[Y2] E[XY]=r,那么 P ( X > 0 , Y > 0 ) = P ( X < 0 , Y < 0 ) = 1 / 4 + α / 2 π P(X > 0,Y > 0) = P(X < 0, Y < 0)=1/4 + \alpha / 2\pi P(X>0,Y>0)=P(X<0,Y<0)=1/4+α/2π P ( X < 0 , Y > 0 ) = P ( X > 0 , Y < 0 ) = 1 / 4 − α / 2 π P(X < 0,Y > 0) = P(X > 0, Y < 0)=1/4 - \alpha / 2\pi P(X<0,Y>0)=P(X>0,Y<0)=1/4α/2π

证明:略。

5.2.3 贝叶斯定理与条件分布密度表示理论

贝叶斯定理 f Y ( y ∣ X = x ) = f X ( x ∣ Y = y ) f Y ( y ) f X ( x ) f_Y(y|X=x)=\frac{f_X(x|Y=y)f_Y(y)}{f_X(x)} fY(yX=x)=fX(x)fX(xY=y)fY(y)

该定理在讨论条件概率问题时,把需要利用分布函数讨论的问题转化为利用分布密度函数来讨论,简化了问题的讨论。

5.2.4 联合正态分布的边缘分布密度与条件分布密度

略。

5.2.5 几个基本关系式

假设 X , Y X,Y X,Y 服从均值为 0 的联合正态分布,则 E [ X Y ] = r σ 1 σ 2 {\mathbb E}[XY] = r\sigma_1\sigma_2 E[XY]=rσ1σ2 E [ X 2 Y 2 ] = E [ X 2 ] E [ Y 2 ] + 2 E 2 [ X Y ] {\mathbb E}[X^2Y^2]={\mathbb E}[X^2]{\mathbb E}[Y^2] + 2{\mathbb E}^2[XY] E[X2Y2]=E[X2]E[Y2]+2E2[XY] E [ ∣ X Y ∣ ] = 2 σ 1 σ 2 π ( cos ⁡ α + sin ⁡ α ) {\mathbb E}[|XY|] = \frac{2\sigma_1\sigma_2}{\pi}(\cos\alpha+\sin\alpha) E[XY]=π2σ1σ2(cosα+sinα),其中 r = sin ⁡ α , − π / 2 < α ≤ π / 2 r=\sin\alpha, -\pi/2 < \alpha \le \pi/2 r=sinα,π/2<απ/2

证明:略。

5.2.6 反正弦率

X ( t ) X(t) X(t) 为平稳过程,且 X ( t + τ ) , X ( t ) X(t+\tau),X(t) X(t+τ),X(t) 的联合分布服从正态分布,对 X ( t ) X(t) X(t) 进行非线性运算
Y ( t ) = { 1 , X ( t ) ≥ 0 − 1 , X ( t ) < 0 Y(t) = \begin{cases} 1, & X(t)\ge0 \\ -1, & X(t) < 0 \end{cases} Y(t)={1,1,X(t)0X(t)<0
那么有 E [ Y ( t + τ ) Y ( t ) ] = 2 α / π {\mathbb E}[Y(t+\tau)Y(t)]=2\alpha / \pi E[Y(t+τ)Y(t)]=2α/π。随机变量 X ( t + τ ) , X ( t ) X(t+\tau),X(t) X(t+τ),X(t) 联合正态,那么 r = R ( τ ) / R ( 0 ) = sin ⁡ α r=R(\tau)/R(0)=\sin\alpha r=R(τ)/R(0)=sinα,于是有 R Y ( τ ) = 2 π arcsin ⁡ R ( τ ) R ( 0 ) R_Y(\tau)= \frac{2}{\pi} \arcsin{\frac{R(\tau)}{R(0)}} RY(τ)=π2arcsinR(0)R(τ)

5.2.7 零交叉问题

略。

5.2.8 正态分布拖尾概率估计

定理 5.2(Mill比值):对任意的 x > 0 x > 0 x>0 x 1 + x 2 e − x 2 / 2 < ∫ x ∞ e − u 2 / 2 d u < 1 x e − x 2 / 2 \frac{x}{1+x^2} e^{-x^2/2} < \int_x^\infty e^{-u^2/2}du < \frac{1}{x} e^{-x^2/2} 1+x2xex2/2<xeu2/2du<x1ex2/2。特别的,当 x → ∞ x\to\infty x 时有 ∫ x ∞ e − u 2 / 2 d u ≈ 1 x e − x 2 / 2 \int_x^\infty e^{-u^2/2}du \approx \frac{1}{x} e^{-x^2/2} xeu2/2dux1ex2/2

5.3 布朗运动

5.3.1 有限维联合概率密度

定理 5.3:设 { B ( t ) , t ≥ 0 } \{B(t),t\ge0\} {B(t),t0} 为标准的布朗运动,令 x 0 = 0 , t 0 = 0 x_0=0,t_0=0 x0=0,t0=0,则当 B ( 0 ) = 0 B(0)=0 B(0)=0 时,对 ∀ 0 < t 1 < t 2 < ⋯ < t n \forall 0 < t_1 < t_2 < \cdots < t_n 0<t1<t2<<tn ( B ( t 1 ) , B ( t 2 ) , . . . , B ( t n ) ) (B(t_1),B(t_2),...,B(t_n)) (B(t1),B(t2),...,B(tn)) 的联合概率密度函数为 g ( x 1 , x 2 , . . . , x n ; t 1 , t 2 , . . . , t n ) = Π i = 1 n p ( x i − x i − 1 ; t i − t i − 1 ) g(x_1,x_2,...,x_n; t_1,t_2,...,t_n) = \Pi_{i=1}^n p(x_i-x_{i-1}; t_i-t_{i-1}) g(x1,x2,...,xn;t1,t2,...,tn)=Πi=1np(xixi1;titi1),其中 p ( x ; t ) = 1 2 π t exp ⁡ ( − x 2 / 2 t ) p(x;t)=\frac{1}{\sqrt{2\pi t}}\exp(-x^2/2t) p(x;t)=2πt 1exp(x2/2t)

5.3.2 布朗运动的性质

下面考虑标准布朗运动(即取 c = 1 c=1 c=1)的性质。

平移特性:对任意的 s > 0 s > 0 s>0 B s ( t ) = B ( t + s ) − B ( s ) , t ≥ 0 B_s(t)=B(t+s)-B(s),t\ge0 Bs(t)=B(t+s)B(s),t0 是标准布朗运动;

伸缩性:对任意的 c > 0 c > 0 c>0 { c B ( t / c ) , t ≥ 0 } \{\sqrt{c} B(t/c), t\ge0\} {c B(t/c),t0} 是标准布朗运动;

对称性 { − B ( t ) , t ≥ 0 } \{-B(t),t\ge0\} {B(t),t0} 是标准布朗运动;

鞅性:略。

其余还有正态过程性质、马尔可夫性质、反射性质、时间可逆性等在后面详细解释。

5.3.3 正态过程

定义:若随机过程 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT},对任意 t i ∈ T , i = 1 , 2 , . . . , n t_i\in T,i=1,2,...,n tiT,i=1,2,...,n X ( t 1 ) , . . . , X ( t n ) X(t_1),...,X(t_n) X(t1),...,X(tn) 的联合分布为 n n n 维正态分布,则称 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT} 为正态过程。

定理 5.4:设 { B ( t ) , t ≥ 0 } \{B(t),t\ge 0\} {B(t),t0} 是正态过程,轨道连续, B ( 0 ) = 0 , ∀ s , t > 0 B(0)=0,\forall s,t>0 B(0)=0,s,t>0,有 E B ( t ) = 0 , E [ B ( s ) B ( t ) ] = s ∧ t {\mathbb E}B(t)=0, {\mathbb E}[B(s)B(t)]=s\wedge t EB(t)=0,E[B(s)B(t)]=st,则 { B ( t ) , t ≥ 0 } \{B(t),t\ge0\} {B(t),t0} 是布朗运动,反之亦然。

证明:充分性易证。必要性证明,验证布朗运动有关条件:1) ∀ t , s ≥ 0 \forall t, s \ge0 t,s0,可以验证增量 B ( t ) − B ( s ) ∼ N ( 0 , ∣ t − s ∣ ) B(t)-B(s) \sim {\mathcal N}(0,|t-s|) B(t)B(s)N(0,ts) 是零均值正态随机变量;2)再验证独立增量过程,而验证两个高斯分布的独立性只需要证明他们的互相关为 0,细节略。

5.3.4 马尔可夫性

正向马尔可夫性 ∀ t 1 < t 2 < ⋯ < t n \forall t_1 < t_2 < \cdots < t_n t1<t2<<tn,在给定 B ( t 1 ) , . . , B ( t n − 1 ) B(t_1),..,B(t_{n-1}) B(t1),..,B(tn1) 下, B ( t n ) B(t_n) B(tn) 的条件概率密度函数与只给定 B ( t n − 1 ) B(t_{n-1}) B(tn1) B ( t n ) B(t_n) B(tn) 的条件概率密度相同。

反向马尔可夫性:同理。

中间关于两侧的马尔可夫性 ∀ t 1 < t 2 < ⋯ < t n \forall t_1 < t_2 < \cdots < t_n t1<t2<<tn,在给定 . . . , B ( t i − 1 ) , B ( t i + 1 ) , . . . ...,B(t_{i-1}),B(t_{i+1}),... ...,B(ti1),B(ti+1),... 下, B ( t i ) B(t_i) B(ti) 的条件概率密度函数与只给定 B ( t i − 1 ) , B ( t i + 1 ) B(t_{i-1}), B(t_{i+1}) B(ti1),B(ti+1) B ( t i ) B(t_i) B(ti) 的条件概率密度相同。

下面讨论 B ( t 2 ) B(t_2) B(t2) 关于给定 B ( t 1 ) , B ( t 3 ) B(t_1),B(t_3) B(t1),B(t3) 的条件概率密度。

定理5.5:对 0 ≤ t 1 < t < t 2 0\le t_1 < t <t_2 0t1<t<t2,给定 B ( t 1 ) = a , B ( t 2 ) = b , B ( 0 ) = 0 B(t_1)=a, B(t_2)=b, B(0)=0 B(t1)=a,B(t2)=b,B(0)=0,则 B ( t ) B(t) B(t) 的条件概率密度是一个正态密度,其均值为 a + ( b − a ) ( t − t 1 ) / ( t 2 − t 1 ) a + (b-a)(t-t_1)/(t_2-t_1) a+(ba)(tt1)/(t2t1),方差为 ( t 2 − t ) ( t − t 1 ) / ( t 2 − t 1 ) (t_2-t)(t-t_1) / (t_2-t_1) (t2t)(tt1)/(t2t1)

证明:由于 B ( t ) B(t) B(t) 为正态过程, b = B ( t 1 ) , B ( t ) , B ( t 2 ) {\boldsymbol b}=B(t_1),B(t),B(t_2) b=B(t1),B(t),B(t2) 服从联合高斯分布,其均值为 μ = [ 0 , 0 , 0 ] T {\boldsymbol \mu}=[0,0,0]^{\mathrm T} μ=[0,0,0]T,协方差矩阵
Σ = E [ b b T ] = [ t 1 t 1 t 1 t 1 t t t 1 t t 2 ] \Sigma = {\mathbb E}[{\boldsymbol b}{\boldsymbol b}^{\mathrm T}] = \begin{bmatrix} t_1 & t_1 & t_1 \\ t_1 & t & t \\ t_1 & t & t_2 \end{bmatrix} Σ=E[bbT]=t1t1t1t1ttt1tt2
直接根据高斯分布向量的条件分布即可得到。

Remark:实际上 E [ B ( t ) ∣ B ( t 1 ) , B ( t 2 ) ] {\mathbb E}[B(t) | B(t_1),B(t_2)] E[B(t)B(t1),B(t2)] 是关于 t t t 的线性函数。

5.3.5 反射性

反射性:对 a > 0 a > 0 a>0,定义 τ a = inf ⁡ { t : B ( t ) = a } \tau_a=\inf\{t: B(t)=a\} τa=inf{t:B(t)=a} 表示首次击中时间,定义 B ∗ ( t ) = { B ( t ) , t ≤ τ a 2 a − B ( t ) , t > τ a B^{\ast}(t)=\begin{cases} B(t), & t \le \tau_a \\ 2a-B(t), & t > \tau_a \end{cases} B(t)={B(t),2aB(t),tτat>τa,则 { B ∗ ( t ) , t ≥ 0 } \{B^\ast(t),t\ge0\} {B(t),t0} 是标准布朗运动;

证明:略。

5.3.6 时间可逆性

时间可逆性:定义 B ′ ( t ) = { t B ( 1 / t ) , t > 0 0 , t = 0 B'(t)=\begin{cases} tB(1/t), & t > 0 \\ 0, & t=0 \end{cases} B(t)={tB(1/t),0,t>0t=0,则 { B ′ ( t ) , t ≥ 0 } \{B'(t),t\ge0\} {B(t),t0} 是标准布朗运动;

证明: B ( t ) B(t) B(t) 是正态过程,根据前面正态过程的定义,可以得到 t B ( 1 / t ) tB(1/t) tB(1/t) 也是正态过程。再根据定理 5.4 可以验证条件 E [ B ′ ( t ) B ′ ( s ) ] = s ∧ t {\mathbb E}[B'(t)B'(s)]=s\wedge t E[B(t)B(s)]=st,关于在 t = 0 t=0 t=0 点的连续性稍复杂,省略。由此可以证明 B ′ ( t ) B'(t) B(t) 是布朗运动。

最后给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

前面的一些博客链接如下
泛函分析专栏
高等数值分析专栏
随机过程专栏
随机过程1 绪论
随机过程2 平稳过程与二阶矩
离散鞅论1 | 基本概念
离散鞅论2 | 停时与停时定理
离散鞅论3 | 鞅论应用
泊松过程1 | 定义与基本性质
泊松过程2 | 泊松过程扩展
布朗运动 1 | 基本概念与性质
布朗运动 2 | 布朗运动的推广
马尔可夫过程1 | 基本概念
马尔可夫过程2 | 状态空间
连续参数马尔可夫链

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab 是一种流行的数学软件,用于进行各种数学计算和模拟。布朗运动是一种随机漂移的过程,在Matlab中可以使用随机性质和数学模型来模拟。 在Matlab中,可以使用随机数生成器来模拟布朗运动。首先,我们需要定义一个初始位置和时间步长。然后,通过生成随机数来模拟每个时间步长中的移动距离。这里使用的随机数遵循正态分布,模拟布朗粒子在每个时间步长中的随机运动。 下面是一个简单的Matlab代码用于模拟布朗运动: ```Matlab % 定义初始位置和时间步长 initial_position = 0; time_step = 0.1; num_steps = 1000; % 生成随机数(遵循正态分布) random_numbers = randn(num_steps, 1); % 初始化轨迹数组 trajectory = zeros(num_steps, 1); trajectory(1) = initial_position; % 模拟布朗运动 for i = 2:num_steps trajectory(i) = trajectory(i-1) + sqrt(time_step) * random_numbers(i); end % 绘制布朗运动轨迹 plot(trajectory) xlabel('时间步长') ylabel('位置') title('布朗运动模拟') ``` 运行以上代码,可以得到一个布朗运动的轨迹图。轨迹图展示了粒子在随机时间步长内的位置变化情况。 Matlab提供了丰富的数学函数和图形绘制工具,可以进一步优化和扩展布朗运动模拟。可以使用不同的随机数生成器、调整时间步长和模拟步数、添加噪声等,以更准确地模拟布朗运动。 总而言之,Matlab可以很方便地进行布朗运动模拟,只需使用随机数生成器和数学模型即可。这使得研究者和工程师可以更好地理解和分析布朗运动以及其他随机漂移过程的行为和特征。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值