BP神经网络笔记

一、前向和反向传播

当我们使用前馈神经网络接受输入x并产生输入y'时,输入x提供初始信息,到达输入层,传播到隐藏层的隐藏单元,最终到达输出层,这称为前向传播。前向传播直到产生一个标量代价函数J(\Theta )

反向传播(Rumelart,1986),允许代价函数的信息通过函数向后传播,找到预测的和实际的误差,以便计算梯度。从而能够对相应的参数W更新。

BP算法的主要流程可以总结如下:

=====================================================================

  输入:训练集D=(xk,yk),初始权重; 学习率;

  过程:

  1. 在(0, 1)范围内随机初始化网络中所有连接权和阈值

  2. repeat:

  3.   for all (xk,yk)∈D(xk,yk)∈D do

  4.     根据当前参数计算当前样本的输出;

  5.     计算输出层神经元的梯度项;

  6.     计算隐层神经元的梯度项;

  7.     更新连接权与阈值

  8.   end for

  9. until 达到停止条件

  输出:连接权与阈值确定的多层前馈神经网络

======================================================================

下面给出一个具体的例子来进行分析:

原文地址:http://www.cnblogs.com/charlotte77/p/5629865.html

 

第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

其中,输入数据  i1=0.05,i2=0.10;

   输出数据 o1=0.01,o2=0.99;

   初始权重  w1=0.15,w2=0.20,w3=0.25,w4=0.30;

          w5=0.40,w6=0.45,w7=0.50,w8=0.55

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

二、算法推导

为了通过输入数据,能够得到符合我们期望的输出,我们要进行如下的操作。

(一)、前向传播

1.输入层--->隐含层

计算神经元h1的输入加权和

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

同理,可计算出神经元h2的输出o2:

2.隐含层--->输出层

计算输出层神经元的输出值:

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

(二)反向传播

1.计算总的误差

代价函数被用来计算ANN输出值与实际值之间的误差。常用的代价函数是二次代价函数(Quadratic cost function):

对于两个输入,总误差是两个误差的和:

2.从隐含层--->输出层的权值更新

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

我们这样就从整体误差传播到了w5(误差和梯度之间的联系)。一个神经元里面是两块部分,前边是net和权重w有关,后边是out,和你的输出是有关系的。具体的细节图如下:

下面分别计算公式中的每一项:

最后,把计算的三个结果乘起来:

这样,我们就得到了整体误差对w5的偏导值。

把偏导数用我们的结果来替换掉,我们发现:

换个误差表示,输出层的误差:

这样整体误差对w5的偏导公式可以写成:

如果输出层误差计为负的话,也可以写成:

最后,利用下面的公式来更新w5的值:

更新w6,w7,w8的情况和上面的相似。

(3)隐含层--->隐含层的权值更新

计算总误差对w5的偏导时,是从out(o1)---->net(o1)---->w5,但是在隐含层之间的权值更新时,是out(h1)---->net(h1)---->w1,而out(h1)会接受E(o1)和E(o2)两个地方传来的误差,所以这个地方两个都要计算。相比之下多了运算步骤。

 


求得的结果:

接下来计算,:

 

最后三者相乘:

公式简化:


利用公式更新w1的值:

同理,可更新w2,w3,w4的权值。

我们要不断地对这个网络进行迭代计算从而来更新我们的权值,来不断的降低误差。在迭代10000次之后,总误差为0.000035085,输出为[0.015912196,0.984065734](原输入为[0.01,0.99])。

具体的算法理论推导可以看下这篇博客,推导的很详细:

https://blog.csdn.net/u014313009/article/details/51039334

三、算法实现

# coding:utf-8
import random
import math

#
#   参数解释:
#   "pd_" :偏导的前缀
#   "d_" :导数的前缀
#   "w_ho" :隐含层到输出层的权重系数索引
#   "w_ih" :输入层到隐含层的权重系数的索引

class NeuralNetwork:
    LEARNING_RATE = 0.5

    def __init__(self, num_inputs, num_hidden, num_outputs, hidden_layer_weights=None, hidden_layer_bias=None,
                 output_layer_weights=None, output_layer_bias=None):
        self.num_inputs = num_inputs

        self.hidden_layer = NeuronLayer(num_hidden, hidden_layer_bias)
        self.output_layer = NeuronLayer(num_outputs, output_layer_bias)

        self.init_weights_from_inputs_to_hidden_layer_neurons(hidden_layer_weights)
        self.init_weights_from_hidden_layer_neurons_to_output_layer_neurons(output_layer_weights)

    def init_weights_from_inputs_to_hidden_layer_neurons(self, hidden_layer_weights):
        weight_num = 0
        for h in range(len(self.hidden_layer.neurons)):
            for i in range(self.num_inputs):
                if not hidden_layer_weights:
                    self.hidden_layer.neurons[h].weights.append(random.random())
                else:
                    self.hidden_layer.neurons[h].weights.append(hidden_layer_weights[weight_num])
                weight_num += 1

    def init_weights_from_hidden_layer_neurons_to_output_layer_neurons(self, output_layer_weights):
        weight_num = 0
        for o in range(len(self.output_layer.neurons)):
            for h in range(len(self.hidden_layer.neurons)):
                if not output_layer_weights:
                    self.output_layer.neurons[o].weights.append(random.random())
                else:
                    self.output_layer.neurons[o].weights.append(output_layer_weights[weight_num])
                weight_num += 1

    def inspect(self):
        print('------')
        print('* Inputs: {}'.format(self.num_inputs))
        print('------')
        print('Hidden Layer')
        self.hidden_layer.inspect()
        print('------')
        print('* Output Layer')
        self.output_layer.inspect()
        print('------')

    def feed_forward(self, inputs):
        hidden_layer_outputs = self.hidden_layer.feed_forward(inputs)
        return self.output_layer.feed_forward(hidden_layer_outputs)

    def train(self, training_inputs, training_outputs):
        self.feed_forward(training_inputs)

        # 1. 输出神经元的值
        pd_errors_wrt_output_neuron_total_net_input = [0] * len(self.output_layer.neurons)
        for o in range(len(self.output_layer.neurons)):
            # ∂E/∂zⱼ
            pd_errors_wrt_output_neuron_total_net_input[o] = self.output_layer.neurons[
                o].calculate_pd_error_wrt_total_net_input(training_outputs[o])

        # 2. 隐含层神经元的值
        pd_errors_wrt_hidden_neuron_total_net_input = [0] * len(self.hidden_layer.neurons)
        for h in range(len(self.hidden_layer.neurons)):

            # dE/dyⱼ = Σ ∂E/∂zⱼ * ∂z/∂yⱼ = Σ ∂E/∂zⱼ * wᵢⱼ
            d_error_wrt_hidden_neuron_output = 0
            for o in range(len(self.output_layer.neurons)):
                d_error_wrt_hidden_neuron_output += pd_errors_wrt_output_neuron_total_net_input[o] * \
                                                    self.output_layer.neurons[o].weights[h]

            # ∂E/∂zⱼ = dE/dyⱼ * ∂zⱼ/∂
            pd_errors_wrt_hidden_neuron_total_net_input[h] = d_error_wrt_hidden_neuron_output * \
                                                             self.hidden_layer.neurons[
                                                                 h].calculate_pd_total_net_input_wrt_input()

        # 3. 更新输出层权重系数
        for o in range(len(self.output_layer.neurons)):
            for w_ho in range(len(self.output_layer.neurons[o].weights)):
                # ∂Eⱼ/∂wᵢⱼ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢⱼ
                pd_error_wrt_weight = pd_errors_wrt_output_neuron_total_net_input[o] * self.output_layer.neurons[
                    o].calculate_pd_total_net_input_wrt_weight(w_ho)

                # Δw = α * ∂Eⱼ/∂wᵢ
                self.output_layer.neurons[o].weights[w_ho] -= self.LEARNING_RATE * pd_error_wrt_weight

        # 4. 更新隐含层的权重系数
        for h in range(len(self.hidden_layer.neurons)):
            for w_ih in range(len(self.hidden_layer.neurons[h].weights)):
                # ∂Eⱼ/∂wᵢ = ∂E/∂zⱼ * ∂zⱼ/∂wᵢ
                pd_error_wrt_weight = pd_errors_wrt_hidden_neuron_total_net_input[h] * self.hidden_layer.neurons[
                    h].calculate_pd_total_net_input_wrt_weight(w_ih)

                # Δw = α * ∂Eⱼ/∂wᵢ
                self.hidden_layer.neurons[h].weights[w_ih] -= self.LEARNING_RATE * pd_error_wrt_weight

    def calculate_total_error(self, training_sets):
        total_error = 0
        for t in range(len(training_sets)):
            training_inputs, training_outputs = training_sets[t]
            self.feed_forward(training_inputs)
            for o in range(len(training_outputs)):
                total_error += self.output_layer.neurons[o].calculate_error(training_outputs[o])
        return total_error


class NeuronLayer:
    def __init__(self, num_neurons, bias):

        # 同一层的神经元共享一个截距项b
        self.bias = bias if bias else random.random()

        self.neurons = []
        for i in range(num_neurons):
            self.neurons.append(Neuron(self.bias))

    def inspect(self):
        print('Neurons:', len(self.neurons))
        for n in range(len(self.neurons)):
            print(' Neuron', n)
            for w in range(len(self.neurons[n].weights)):
                print('  Weight:', self.neurons[n].weights[w])
            print('  Bias:', self.bias)

    def feed_forward(self, inputs):
        outputs = []
        for neuron in self.neurons:
            outputs.append(neuron.calculate_output(inputs))
        return outputs

    def get_outputs(self):
        outputs = []
        for neuron in self.neurons:
            outputs.append(neuron.output)
        return outputs


class Neuron:
    def __init__(self, bias):
        self.bias = bias
        self.weights = []

    def calculate_output(self, inputs):
        self.inputs = inputs
        self.output = self.squash(self.calculate_total_net_input())
        return self.output

    def calculate_total_net_input(self):
        total = 0
        for i in range(len(self.inputs)):
            total += self.inputs[i] * self.weights[i]
        return total + self.bias

    # 激活函数sigmoid
    def squash(self, total_net_input):
        return 1 / (1 + math.exp(-total_net_input))

    def calculate_pd_error_wrt_total_net_input(self, target_output):
        return self.calculate_pd_error_wrt_output(target_output) * self.calculate_pd_total_net_input_wrt_input();

    # 每一个神经元的误差是由平方差公式计算的
    def calculate_error(self, target_output):
        return 0.5 * (target_output - self.output) ** 2

    def calculate_pd_error_wrt_output(self, target_output):
        return -(target_output - self.output)

    def calculate_pd_total_net_input_wrt_input(self):
        return self.output * (1 - self.output)

    def calculate_pd_total_net_input_wrt_weight(self, index):
        return self.inputs[index]


# 文中的例子:

nn = NeuralNetwork(2, 2, 2, hidden_layer_weights=[0.15, 0.2, 0.25, 0.3], hidden_layer_bias=0.35,
                   output_layer_weights=[0.4, 0.45, 0.5, 0.55], output_layer_bias=0.6)
for i in range(10000):
    nn.train([0.05, 0.1], [0.01, 0.09])
    print(i, round(nn.calculate_total_error([[[0.05, 0.1], [0.01, 0.09]]]), 9))



# 另外一个例子,可以把上面的例子注释掉再运行一下:

# training_sets = [
#     [[0, 0], [0]],
#     [[0, 1], [1]],
#     [[1, 0], [1]],
#     [[1, 1], [0]]
# ]

# nn = NeuralNetwork(len(training_sets[0][0]), 5, len(training_sets[0][1]))
# for i in range(10000):
#     training_inputs, training_outputs = random.choice(training_sets)
#     nn.train(training_inputs, training_outputs)
#     print(i, nn.calculate_total_error(training_sets))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值