一: 捏脸系统
2D游戏:角色的个性化设定通过修改贴图来实现,不同部位的贴图存在图层前后关系。
3D游戏:通过网格与贴图的方式来实现。
常见的角色个性化设定由两种方式:
- 模板选择方式;
优点:模板都是预先制作的,效果可控,美观。
缺点:需要花费大量时间生成足够多的模板。 - 自由调整方式;
优点:提供具有物理含义的滑条,关键点的拖拽等以达到改变模型的效果。使得可以生成的个性化角色数量大幅增加,减少人工生成模板的成本。
缺点:对于没有美术功底的普通玩家,通过滑条或关键点的调整很难达到满意的细微的人脸变化。因此,自动捏脸成为了很多游戏中的关键模块。
目前,行业中的自动捏脸系统主要有以下几方面的问题:
- 仅能适用于真实系的游戏,现有的系统采用将真实人脸的特征直接迁移到游戏人脸中的方法,保证两张人脸的类似,无法适用于风格变化较大的卡通系游戏。
- 现有的系统需要对游戏引擎进行模拟或对真实人脸进行全脸建模,计算复杂度较高。
- 现有的系统模块耦合度较高,对于不同游戏的部署需要进行算法及系统方面的较大调整。
二. 基于照片的角色捏脸流程
- 输入照片,检测其中主要的人脸,同时进行发型分类和眼镜检测。
- 在检测到的人脸区域,进一步进行关键点检测。对原始照片中的关键点进行预处理,已达到归一,对称,平滑的效果。
- 根据游戏风格,对人脸关键点进行调整。
- 得到风格化的关键点后,将其转化为游戏中模型的控制参数。
1. 基于关键点的人脸表示方法
脸部特征一般分为形状特征和颜色特征。
业内比较成熟的表示方式是使用关键点信息表示脸部特征。关键点越多,表示能力越强。但是自动捏脸需要对定义的关键点的3D信息进行估计,关键点越多,预测难度越大。
2. 人脸关键点检测
- 基于深度学习(CNN)的人脸检测。
可以在更加难以识别的照片中检测到人脸,如人脸朝向较偏,光照阴影干扰较大的情况。
需要使用GPU进行推理,否则检测速度较慢,尤其对于较大的图片。 - 基于图像特征(HoG)的人脸检测。
基于卷积神经网络(CNN)的3D人脸重建和人脸关键点检测方法,大体上可以分为两类:
1. 基于3D Morphable Model (3DMM)的方法。
使用CNN来预测3DMM系数或3D形变,根据单张2D人脸照片来复原人脸3D信息,从而进行密集的关键点检测或人脸3D重建。
这类方法效果受限于人脸模型或模板定义的模型空间,重建的3D人脸往往过于接近模板而较少保留重建对象人脸的特征。
这类方法使用CNN预测3DMM系数后需要调用模型基得到3D人脸三角面片模型,还需要使用透视投影和3D非线性形变等计算。增加了3D人脸重建的计算开