TPR、FPR、TNR、FNR的理解

本文详细解释了TPR(真阳性率)、FPR(假阳性率)、TNR(真阴性率)和FNR(假阴性率)等关键评估指标的概念及其在机器学习分类任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:https://blog.csdn.net/zhq9695/article/details/82909967

 

TPR(True Positive Rate)可以理解为所有正类中,有多少被预测成正类(正类预测正确),即召回率,给出定义如下:

\large TPR=\frac{TP}{TP+FN}

FPR(False Positive Rate)可以理解为所有反类中,有多少被预测成正类(正类预测错误),给出定义如下:

\large FPR=\frac{FP}{FP+TN}

TNR(True Negative Rate)可以理解为所有反类中,有多少被预测成反类(反类预测正确),给出定义如下:

\large TNR=\frac{TN}{FP+TN}

FNR(False Negative Rate)可以理解为所有正类中,有多少被预测成反类(反类预测错误),给出定义如下:


\large FNR=\frac{FN}{TP+FN}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值