周一至周四:基础知识和数学基础
-
第1天:深度学习介绍
- 了解什么是人工智能、机器学习和深度学习
- 深度学习的历史和发展
- 深度学习的应用领域
-
第2-3天:数学基础
- 线性代数(矩阵运算、特征值、特征向量)
- 微积分(偏导数、链式法则)
- 概率论与统计(概率分布、期望、方差)
-
第4-5天:机器学习基础
- 监督学习、无监督学习和强化学习的基本概念
- 常见的机器学习算法概览(线性回归、决策树、支持向量机等)
-
第6-7天:编程基础
- Python编程基础
- NumPy、Pandas等数据处理库的使用
- Matplotlib、Seaborn等数据可视化工具的使用
周五至周二:深度学习核心概念
-
第8-10天:神经网络基础
- 神经元和感知机
- 前馈神经网络和反向传播算法
- 损失函数和优化器
-
第11-13天:深入神经网络
- 卷积神经网络(CNN)
- 循环神经网络(RNN)和长短期记忆网络(LSTM)
- 正则化技术(如Dropout、L1/L2正则化)
-
第14-16天:现代深度学习架构
- 深度学习框架概览(TensorFlow、PyTorch)
- 高级模型结构(如ResNet、Transformer)
- 迁移学习和预训练模型
周三至周日:实战项目和高级主题
-
第17-20天:实战项目一
- 图像识别项目(使用CNN)
- 通过实践学习数据预处理、模型构建、训练和评估
-
第21-24天:实战项目二
- 自然语言处理项目(使用RNN/LSTM或Transformer)
- 文本数据的预处理、词嵌入、序列建模
-
第25-27天:高级深度学习主题
- 对抗生成网络(GANs)
- 强化学习简介
- 深度学习在特定领域的应用(如自动驾驶、医疗诊断)
-
第28-30天:综合复习和未来学习路径
- 对前面学习的内容进行复习
- 探索深度学习的最新研究和趋势
- 制定未来的学习计划和职业规划